Tour de Physiology: The Exceptional Power Outputs and V̇O₂ of Climbing in the Tour de France

Authors

  • Ole Kristian Berg Faculty of Health Sciences and Social Care, Molde University College, Molde, Britvegen 2, 6410 Molde, Norway

DOI:

https://doi.org/10.28985/1425.jsc.15

Keywords:

Cycling, Oxygen Consumption, Critical Power

Abstract

The Tour de France stands as perhaps the most demanding endurance competition in the world, requiring athletes to sustain exceptional physiological performance over three weeks of racing. Central to success in this event is a remarkably high maximal oxygen uptake (V̇O₂max). The 2024 and 2025 Tour de France showcased unprecedented climbing performances, with new records set on iconic ascents. This brief report analyzes the physiological demands of these performances by estimating the V̇O₂ and power output required during six decisive climbs (Plateau de Beille, Isola 2000, Col de la Couillole, Hautacam, Peyragudes, Mont Ventoux) by the race winner, Tadej Pogačar. Using publicly available climb data, rider anthropometrics, and validated mechanical models of cycling power output, results indicate estimated mean power outputs of 442 ± 15 W and corresponding mean oxygen consumptions of 80 ± 3 mL·kg⁻¹·min⁻¹ sustained over ~40 min. Extrapolating from these efforts and known relationships between critical power and V̇O₂max suggests that Pogačar’s V̇O₂max during the race likely exceeded 90 mL·kg⁻¹·min⁻¹. These findings underscore the extraordinary aerobic capacity required to achieve record-breaking performances in Grand Tour cycling. They also highlight how ongoing improvements in training, equipment, and rider physiology continue to push the limits of human endurance performance to the enjoyment of the spectators.

Downloads

Download data is not yet available.

References

Attia, P. (2024). 318 - The Meteoric Rise of Tadej Pogačar: From Prodigy to Cycling Legend. https://www.youtube.com/watch?v=m9yjbJJBjHU

Barnaby, G., Yon, J., & Burgess, S. (2021). Mapping whole-event drive losses: studying the impact of race profile and rider input on bicycle transmission efficiency. Journal of Science and Cycling, 10(2). https://www.jsc-journal.com/index.php/JSC/article/view/664

Bell, P. G., Furber, M. J., KA, V. A. N. S., Antón-Solanas, A., & Swart, J. (2017). The Physiological Profile of a Multiple Tour de France Winning Cyclist. Med Sci Sports Exerc, 49(1), 115-123. doi: 10.1249/mss.0000000000001068

Bierman, J. (2024). Road Bike Tire Test: Continental Grand Prix 5000 S TR 30. Retrieved 13.06. from https://www.bicyclerollingresistance.com/road-bike-reviews/continental-grand-prix-5000-s-tr-30

Clark, I. E., Vanhatalo, A., Bailey, S. J., Wylie, L. J., Kirby, B. S., Wilkins, B. W., & Jones, A. M. (2018). Effects of Two Hours of Heavy-Intensity Exercise on the Power-Duration Relationship. Med Sci Sports Exerc, 50(8), 1658-1668. doi: 10.1249/mss.0000000000001601

Coyle, E. F. (2005). Improved muscular efficiency displayed as Tour de France champion matures. J Appl Physiol (1985), 98(6), 2191-2196. doi: 10.1152/japplphysiol.00216.2005

Emirates, U. T. (2025). Tadej Pogačar. Retrieved 13.06. from https://www.uaeteamemirates.com/rider/tadej-pogacar/

Faria, E. W., Parker, D. L., & Faria, I. E. (2005). The science of cycling: factors affecting performance - part 2. Sports Med, 35(4), 313-337. doi: 10.2165/00007256-200535040-00003

Heil, D. P. (2005). Body size as a determinant of the 1-h cycling record at sea level and altitude. Eur J Appl Physiol, 93(5-6), 547-554. doi: 10.1007/s00421-004-1256-5

Hopker, J. G., O'Grady, C., & Pageaux, B. (2017). Prolonged constant load cycling exercise is associated with reduced gross efficiency and increased muscle oxygen uptake. Scand J Med Sci Sports, 27(4), 408-417. doi: 10.1111/sms.12673

Jones, A. M., Burnley, M., Black, M. I., Poole, D. C., & Vanhatalo, A. (2019). The maximal metabolic steady state: redefining the 'gold standard'. Physiol Rep, 7(10), e14098. doi: 10.14814/phy2.14098

Lamberts, R. P., van Vleuten, A., Dumoulin, T., Delahaije, L., & van Erp, T. (2024). Racing Demands for Winning a Grand Tour: Differences and Similarities Between a Female and a Male Winner. Int J Sports Physiol Perform, 19(11), 1209-1217. doi: 10.1123/ijspp.2023-0476

Leo, P., Simon, D., Hovorka, M., Lawley, J., & Mujika, I. (2022). Elite versus non-elite cyclist - Stepping up to the international/elite ranks from U23 cycling. J Sports Sci, 40(16), 1874-1884. doi: 10.1080/02640414.2022.2117394

Lucia, A., Hoyos, J., & Chicharro, J. L. (2001). Physiology of professional road cycling. Sports Med, 31(5), 325-337. doi: 10.2165/00007256-200131050-00004

Péronnet, F., & Massicotte, D. (1991). Table of nonprotein respiratory quotient: an update. Can J Sport Sci, 16(1), 23-29.

Rønnestad, B. R., Hansen, J., Stensløkken, L., Joyner, M. J., & Lundby, C. (2019). Case Studies in Physiology: Temporal changes in determinants of aerobic performance in individual going from alpine skier to world junior champion time trial cyclist. J Appl Physiol (1985), 127(2), 306-311. doi: 10.1152/japplphysiol.00798.2018

Salas-Montoro, J. A., Valdivia-Fernández, I., Rozas, A., Reyes-Sánchez, J. M., Zabala, M., & Pérez-Díaz, J. J. (2025). Do Power Meter Data Depend on the Device on Which They Are Collected? Comparison of Eleven Different Recordings. Sensors (Basel), 25(2). doi: 10.3390/s25020295

Santalla, A., Earnest, C. P., Marroyo, J. A., & Lucia, A. (2012). The Tour de France: an updated physiological review. Int J Sports Physiol Perform, 7(3), 200-209. doi: 10.1123/ijspp.7.3.200

Sidossis, L. S., Horowitz, J. F., & Coyle, E. F. (1992). Load and velocity of contraction influence gross and delta mechanical efficiency. Int J Sports Med, 13(5), 407-411. doi: 10.1055/s-2007-1021289

Strava. (2025a). Col de la Couillole. Retrieved 13.06. from https://www.strava.com/segments/36908823

Strava. (2025b). Hautacam. Retrieved 05.11. from https://www.strava.com/segments/7731042

Strava. (2025c). Isola Village à Isola 2000. Retrieved 13.06. from https://www.strava.com/segments/4238049

Strava. (2025d). Mont Ventoux. Retrieved 05.11. from https://www.strava.com/segments/38095101

Strava. (2025e). Peyragudes. Retrieved 05.11. from https://www.strava.com/segments/31441220

Strava. (2025f). Plateau de Beille. Retrieved 13.06. from https://www.strava.com/segments/665568

Tech, I. P. (2025). Derek Gee. Retrieved 13.06. from https://israelpremiertech.com/rider/derek-gee/

van Druenen, T., & Blocken, B. (2021). Aerodynamic analysis of uphill drafting in cycling. Sports Engineering, 24(1), 10. doi: 10.1007/s12283-021-00345-2

Published

2025-11-09

How to Cite

Berg, O. K. (2025). Tour de Physiology: The Exceptional Power Outputs and V̇O₂ of Climbing in the Tour de France. Journal of Science and Cycling, 14(1), 15. https://doi.org/10.28985/1425.jsc.15

Issue

Section

Original articles