Applications of Language Modelling for a Cycling Aerodynamics’ Coach

Authors

  • Callum Barnes School of Physics and Astronomy, Division of Natural Sciences, University of Kent
  • James Hopker School of Sports and Exercise Science, Division of Natural Sciences, University of Kent
  • Stuart Gibson School of Physics and Astronomy, Division of Natural Sciences, University of Kent

Keywords:

positions, bike fit, Cycling Aerodynamics, Body Rocket, machine learning, language modelling

Abstract

This study investigates the application of Language Modelling in cycling aerodynamics. A novel ground truth is created through recruiting a cohort of experts in cycling aerodynamics, bike fit and biomechanics and taking that ground truth to be the collective expert consensus. Within this study 9 Large Language Models and 1 Large Reasoning Model were tested with 7 of the Large Language Models being open-source models from Google, Meta, Microsoft and Alibaba and the closed source models from OpenAI. This study tested these models without a system prompt, with a system prompt, with applied Retrieval Augmented Generation, with an enthusiast level knowledge base and Retrieval Augmented Generation with a more technical knowledgebase.  The best performing model in this study was OpenAI’s Chat-GPT 4o with an average mark of ()%. And the best performing opensource model was Alibaba’s Qwen2.5:32b with a system prompt and the technical knowledge base providing an average score of . The results from this study show that it is possible to develop a model which performs to a similar level of a human expert within the domain of aerodynamics, bike fit and biomechanics in cycling. Additionally, this study proposes a method to experimentally quantify the improvements an athlete can make through the assistance of a domain specific Large Language Model.

Downloads

Download data is not yet available.

References

Abdin, M., Aneja, J., Behl, H., Bubeck, S., Eldan, R., Gunasekar, S., Harrison, M., Hewett, R. J., Javaheripi, M., Kauffmann, P., Lee, J. R., Lee, Y. T., Li, Y., Liu, W., Mendes, C. C. T., Nguyen, A., Price, E., Rosa, G. de, Saarikivi, O., … Zhang, Y. (2024). Phi-4 Technical Report. https://arxiv.org/abs/2412.08905

Aerosensor. (2025). Aerosensor. https://aerosensor.tech/

AllAboutAI-YT. (2024). Easy-local-rag. https://github.com/AllAboutAI-YT/easy-local-rag/tree/main?tab=readme-ov-file

Barnes, C., Hopker, J., & Gibson, S. (2023). To shuffle or not to shuffle. Journal of Science and Cycling, 12(2), 28–30.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., & others. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems, 33, 1877–1901.

Chatoui, H., & Ata, O. (2021). Automated Evaluation of the Virtual Assistant in Bleu and Rouge Scores. 2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), 1–6. doi: 10.1109/HORA52670.2021.9461351

Gibli. (2025). Gibli. https://giblitech.com/

Google. (2025). Think Smater Not Harder. https://notebooklm.google/

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, A., Vaughan, A., Yang, A., Fan, A., Goyal, A., Hartshorn, A., Yang, A., Mitra, A., Sravankumar, A., Korenev, A., Hinsvark, A., … Ma, Z. (2024). The Llama 3 Herd of Models. https://arxiv.org/abs/2407.21783

Kyle, C. R., & Burke, E. (1984). Improving the racing bicycle. Mechanical Engineering, 106(9), 34–45.

Lee, C., Kim, Y.-B., Ji, H., Lee, Y., Hur, Y., & Lim, H. (2021). On the Redundancy in the Rank of Neural Network Parameters and Its Controllability. Applied Sciences, 11, 725. doi: 10.3390/app11020725

Lee, S., Shakir, A., Koenig, D., & Lipp, J. (2024). Open Source Strikes Bread—New Fluffy Embeddings Model. https://www.mixedbread.ai/blog/mxbai-embed-large-v1

Li, J., Yuan, Y., & Zhang, Z. (2024). Enhancing LLM Factual Accuracy with RAG to Counter Hallucinations: A Case Study on Domain-Specific Queries in Private Knowledge-Bases. arXiv Preprint arXiv:2403.10446.

Li, X., & Li, J. (2023). AnglE-optimized Text Embeddings. arXiv Preprint arXiv:2309.12871.

Nvidia. (2025). NVIDIA T4. https://www.nvidia.com/en-gb/data-center/tesla-t4/

OpenAI. (2025). Get answers. Find inspiration. Be more productive. https://openai.com/chatgpt/overview/

Qin, H., Ma, X., Zheng, X., Li, X., Zhang, Y., Liu, S., Luo, J., Liu, X., & Magno, M. (2024). Accurate LoRA-Finetuning Quantization of LLMs via Information Retention. arXiv Preprint arXiv:2402.05445

Qwen, :, Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu, B., Li, C., Liu, D., Huang, F., Wei, H., Lin, H., Yang, J., Tu, J., Zhang, J., Yang, J., Yang, J., Zhou, J., … Qiu, Z. (2025). Qwen2.5 Technical Report. https://arxiv.org/abs/2412.15115

Rocket, B. (2025). Body Rocket. https://www.bodyrocket.cc/

Streamlines. (2025). Streamlines. https://streamlines.aero/?srsltid=AfmBOopI1l2mJ9UQ67CIwXkjK1GmD1sEgkplt-LsuyhAmjHYXuDBwB64

Team, G., Riviere, M., Pathak, S., Sessa, P. G., Hardin, C., Bhupatiraju, S., Hussenot, L., Mesnard, T., Shahriari, B., Ramé, A., Ferret, J., Liu, P., Tafti, P., Friesen, A., Casbon, M., Ramos, S., Kumar, R., Lan, C. L., Jerome, S., … Andreev, A. (2024). Gemma 2: Improving Open Language Models at a Practical Size. https://arxiv.org/abs/2408.00118

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30.

Published

2025-11-19

How to Cite

Barnes, C., Hopker, J., & Gibson, S. (2025). Applications of Language Modelling for a Cycling Aerodynamics’ Coach. Journal of Science and Cycling, 14(2), 25. Retrieved from https://www.jsc-journal.com/index.php/JSC/article/view/1018