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Abstract: An investigation looking into the application of Artificial Intelligence for live 

positional tracking using on-bike aerodynamic sensors. In this study data from the wind tunnel 

and outdoor conditions were collected using a system from Body Rocket Ltd. By applying a 

Gradient Boosted Machine to the force and moment data the discrete positons of a rider on a 

bike were successfully identified for a rider in the wind tunnel within the dataset it was trained 

on to 100% accuracy. When applied to blind data collected from the wind tunnel the models 

accuracy was limited with a performance of 45%, however, with a new model built around data 

collected outdoors the accuracy of this model was found to be 100%. Overall this study finds 

that with machine learning techniques it is possible to identify positions of a rider on a bike just 

from the raw force data and with further research there is potential to determine a continuous 

range of positions outside of the discrete positons investigated in this study. 
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1. Introduction 

Finding the optimal rider position on a 

bicycle is important for both comfort and 

aerodynamics. It has been shown that a rider 

is responsible for up to 80% of the drag a bike, 

rider system experiences (Kyle & Burke, 

1984) therefore ensuring that a rider is 

maintaining an optimal  position can be vital 

for performance (Crouch et al., 2017). Thus, 

minimising their coefficient of aerodynamic 

drag area (CdA) throughout a race (e.g. a 

time trial) would increase their chances of 

victory (Lukes et al., 2005; Fintelman et al., 

2015; Jongerius et al., 2022), especially if this 

information were provided to allow real-time 

adjustments (Peeters et al., 2020). Previous 

research has shown the potential for inertial 

measurement units to provide feedback to 

riders during time trial cycling that could 

help them maintain their position on the bike 

(Winter et al., 2023). However, the study used 

a static cycling trainer in a laboratory 

environment and did not investigate the 

relationship between changes in body 

position and the relationship to drag profiles. 

Therefore, it is unknown if such inertial 

measurement units could provide feedback 

that would allow optimisation of cycling 

aerodynamic position in the field.  

Recently, an on-bike sensor system (Body 

Rocket Ltd, Sussex, UK) has been developed 

to measure the aerodynamic drag of a rider 

in isolation. The system utilises 4 force 

sensors; one on the handlebar, one on the 

saddle and one on each pedal. The locations 

of the sensors are shown in ¡Error! No se 

encuentra el origen de la referencia.. As each 

of these sensors are at the contact points of 

the bike, the drag of the rider can be 

determined through measuring the 

horizontal force at the sensor. The system 

also measures moments on the saddle and 

handlebar.  
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Figure 1. Diagram of where the four sensors of the 

Body Rocket system are located. 
 

Equipped with this force and moment 

data, the aim of this pilot study was to use 

machine learning techniques to determine 

the different positions a rider might assume 

whilst riding. The investigation consists of 

three parts; 1. to verify whether with artificial 

intelligence and machine learning techniques 

it is possible to identity rider positions from 

a wind tunnel dataset, 2. to determine 

whether the same model is accurate with a 

blind data-set from the wind tunnel, 3. to test 

whether the model could be applied to open 

road cycling.  

2. Materials and Methods 

Four data-sets were provided by Body 

Rocket Ltd, two from the University of 

Southampton wind tunnel (Hampshire, UK), 

Wind Tunnel 1 (WT1) and two from 

Flanders’ Bike Valley (Beringen, Belgium), 

Wind Tunnel 2 (WT2). These data-sets 

included one rider assuming the same 4 

positions (see Figure 2) over the 4 datasets 

(head down, baseline, head up and hands on 

the aero-pads). To ensure the rider was 

maintaining the position, video footage was 

taken in the wind tunnel allowing each run 

and each position to be compared seen in 

¡Error! No se encuentra el origen de la 

referencia..  
 

 

Figure 2. Images from WT1 of a rider adopting 

four distinct cycling positions. With position 

number indicated by the circled numbers. 

 

In WT1 three wind speeds tested were 

tested; 15.2𝑚𝑠−1, 13.2𝑚𝑠−1 and 11.2𝑚𝑠−1. In 

WT2, two speeds were tested at; 16.2𝑚𝑠−1 

and 12.8𝑚𝑠−1.  

Initially, to the force and moment data 

(which can also be referred to as features), a 

Principal Component Analysis (PCA) was 

performed to reduce the dimensionality of 

the data (Shlens, 2014). A multiclass Gradient 

Boosted Machine (GBM) decision tree model 

was then trained on the PCA score data to 

classify the 4 different cycling positions.  To 

train and test the model, the datasets were 

split with 80% used to train the model and 

the 20% held back for subsequent blind 

testing of the model on this first dataset.  

Subsequently, two male riders were 

recruited and asked to ride on an outdoor 

(OD) velodrome (Brighton, Sussex, UK) 

maintaining the same 4 positions as shown in 

Figure 2. Both riders completed 4 laps in each 

position using a bike equipped with the Body 

Rocket Ltd (Sussex, UK) system, set-up to 

their personal anatomy and preferences.  To 

reduce sources of error and accidental 

movement of the rider on the bike, riders 

were observed as they rode around the track 

and at the start finish line an image of the 

rider was taken. This image was then 

compared for each run in each position to 

establish their position.   

In the wind tunnel images were taken of 

the riders to identify the changes in position. 

As the changes at the outdoor velodrome 

were smaller computer vison software 

(Openpose; Cao et al., 2019, 2017; Wei et al., 

2016) was used to determine rider position.  

From the processed images  the joint location 

information was compared from each run to 

quantify changes in position (see ¡Error! No 

se encuentra el origen de la referencia.). 

 

 

1 2 3 4 
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Figure 3. Openpose processed images of one rider 

during outdoor velodrome testing. Blue lines 

represent rider limbs with dots representing axes 

of movement (Cao et al., 2017, 2019; Wei et al., 

2016) overlay. 
The force and moment data collected from 

the Body Rocket Ltd system underwent the 

same pre-processing as performed to the 

wind tunnel data.   

2.1 Statistical analysis  

Three metrics were used to measure 

accuracy of the machine learning model; the 

log loss, mean-squared-error, and 

classification success. The log loss establishes 

the accuracy of the model for each tree built 

in the case for a decision tree-based model, 

which is then compared between the training 

and testing datasets. Mathematically this can 

be described by Equation (1), where; 𝑦𝑖 is the 

true prediction, 𝑦𝑖̂ is the model prediction 

and 𝑁 is the number of samples (Seto et al., 

2022). As the units from the log loss are 

unitless, in this paper they will be referred as 

positional log loss units (PLLU). 

 

𝐿𝑜𝑔𝑙𝑜𝑠𝑠 [𝑃𝐿𝐿𝑈] = 

1

𝑁
∑(𝑦𝑖𝑙𝑜𝑔(𝑦̂𝑖) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑦̂𝑖))

𝑁

𝑖=1

 

Equation 1 
  

The smaller the log loss the greater the 

accuracy of the model. However, if the 

training loss is less than the testing loss then 

it is likely the model is overfitted and will 

have poor performance. 

The mean squared error (MSE) takes the 

sum of the differences between the true 

values and the predicted values then divided 

by the sample size. The smaller this value the 

more accurate the model. As can be seen in 

Equation (2) where 𝑁 is the number of 

samples, 𝑦𝑖 is the true prediction and 𝑦𝑖̂  is the 

prediction (Hodson et al., 2021). As the same 

with the log loss, the MSE will be referred to 

as Positional Mean Squared Error (PMSE). 

 

𝑀𝑆𝐸 [𝑃𝑆𝑀𝐸] =
1

𝑁
∑(𝑦𝑖 − 𝑦𝑖̂)

𝑁

𝑖=1

 

Equation 2 
 

The percentage of classification success of 

the GBM was modelled as the percentage of 

correctly classified predictions. As can be 

seen in Equation (3) where; CS if the 

classification success 𝐹𝑝 is the number of false 

positives, 𝐹𝑛 is the number of false negative 

and 𝑁 is the number of samples. 

 

𝐶𝑆 = (1 −
𝐹𝑝 + 𝐹𝑛

𝑁
) × 100%  

Equation 3 
 

Included in the pre-processing, the data 

was normalized between 0 and 1 and outliers 

outside of 3 times the standard deviation 

were removed. When the models were tested 

using the blind data, normalization was 

performed relative to the training dataset. 

Post processing, a 6 second modal moving 

average was applied in order to remove noise 

within the raw prediction data. 

To visually represent the accuracy of the 

models, data were plotted as time vs. 

position to categorize the 4 positions used the 

WT or OD.  

As the GBM is a tree-based model, the 

number of leaves is also important to 

consider. If there is a very high number of 

leaves the model is likely to be over fit and 

conversely is there is a low number of leaves 

it is likely to be underfit. Whilst building the 

model stopping rounds were used. This 

allows for the model to be built beyond the 

specified number of trees in the building 

process. If the models log loss continues to 

decrease the number of trees (and therefore 

leaves) will increase and if the log loss 

increases the number of trees will be that 

with the lowest log loss.  

3. Results 

The following results are presented in 

graphs alongside an overview of all the 

results.  

3.1 Wind Tunnel data  

For WT1, a GBM was built with 75 trees 

and stopping rounds of 15. The log loss of the 

model was 0.00035PLLU and the mean 

squared error was 0.00129PMSE, leading to a 

model with a small error. With a modal 

average filter applied to the positional data 
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over time the classification accuracy was 

found to be 100% as can be seen in Figure 1 

as the modal moving average (the red trace) 

is exactly the same as the true position (the 

green trace). 

The WT2 dataset produced a 85 leaf GBM 

with a log loss of 0.00080ALLU and mean-

squared error of 0.00022PMSE, leading to a 

100% classification accuracy when filtered by 

time (see Figure 2). In WT2, the rider moved 

from position 1 to position 4 twice but over a 

longer period of time than WT1 (2000 vs 600 

seconds for WT2 vs WT1, respectively). 

3.2 Blind data 

From both WT1 and WT2 a blind dataset 

was produced. With the data collected from 

WT1 the model performed with a log loss of 

4.29312PLLU on the blind dataset, a 

respective MSE of 0.53055PMSE and a 

classification accuracy of 45 %.  

With the WT2 dataset the model 

performed with a log-loss of 6.08763 PLLU, a 

MSE of 0.68907 PMSE and classification 

accuracy of 29%.  

3.3 Outdoor data 

For Rider 1 a 100 leaf model was produced 

and performed with a log loss of 

0.01498PLLU, MSE of 0.00377PMSE and 

classification success of 99.63%. Visually the 

performance of the model can be seen in 

Figure 6. A number of mis-classifications can 

be seen in Figure 6, however, with the modal 

moving average applied an accuracy of 100% 

is achieved. 

For Rider 2 a 100 leaf model was produced 

and performed with a log-loss of 

0.02163PLLU with a respective MSE of 

0.00606PMSE and classification success of 

99.33% (see Table 1). Visually the 

performance of the model can be seen in 

Figure . Similar to the results obtained from 

Rider 1, the results here show a 100% 

accuracy after the modal moving average is 

applied.

 

 
Figure 1. Output position of a rider in WT 1 moving between position 1 to 4 three times throughout the test, green; 

True position, blue; raw output position from  a trained Gradient Boosted Machine (GBM) and red; a moving modal 

average applied to the GBM output data. 
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Figure 2. Output position of a rider WT2 moving between position 1 to 4 on two occasions, green; True position, 

blue; raw output position from a trained Gradient Boosted Machine (GBM) and red; a moving modal average 

applied to the GBM output data. 

 

 
Figure 6. Prediction data from Gradient Boosted Machine built on data collected from Rider 1 moving between 

position 1 and position 4 over a period of 400-500 seconds during OD riding. Green; True position, blue; raw output 

position from a trained Gradient Boosted Machine (GBM) and red; a moving modal average applied to the GBM 

output data. 
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Figure 7. Prediction data from Gradient Boosted Machine built on data collected from Rider 2 moving between 

position 1 and position 4 over a period of 400-500 seconds during OD riding. green; True position, blue; raw output 

position from a trained Gradient Boosted Machine (GBM) and red; a moving modal average applied to the GBM 

output data. 

 
Table 1. Table of performance metrics from the models produced in WT1 and WT2 and from the OD velodrome 

data 

Model and dataset Log-loss (PLLU) MSE (PMSE) CS (%) Number of trees 

WT1 (Train & Test) 0.00035 0.00129 99.96 75 

WT1 (Blind) 4.29312 0.53055 45.03 75 

WT2 (Train & Test) 0.00080 0.00022 99.97 85 

WT2 (Blind) 6.08763 0.68907 28.48 85 

OD– Rider 1 0.01498 0.00377 99.63 100 

OD – Rider 2 0.02163 0.00606 99.33 100 

 
 4. Discussion 

From the results obtained from WT1 and 

WT2 the Body Rocket system has the ability 

to differentiate the discrete positions a rider 

might typically assume on a bike, from large 

changes such as hands on the aero pads 

(leading to upright body position) to small 

changes such as head angle.  

When comparing the two models 

produced from wind tunnel data, similar 

accuracies are observed between WT1 

(providing a 99.957% classification success) 

and WT2 datasets (producing a 99.969% 

classification success). When a modal 

moving average is applied to the data the 

predictions are improved further as can be 

seen in Figure 1 and Figure 2 where the 

output prediction has a 100% classification 

success in predicting the position of the rider. 

Both models are of similar complexity in 

being built with 75 trees and 85 trees for WT1 

and WT2 respectively.  

In this pilot investigation intra-dataset 

variability is high. When comparing the 

results from WT1 and WT2, it is clear that the 

model created from WT1 performs better 

overall (see Table 1). The difference in these 

reported results may be due to the wind 

tunnel's design, specifically, WT1 had a 

rigidly fixed platform whereas WT2 allowed 

for some movement whilst pedalling. In 

addition, as the dataset collected from WT2 

occurred before WT1 Body Rocket system 

developments may have played a role in the 

variability between results.  
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Regardless of which WT dataset is used it 

is likely that the models are overfit. To 

overcome this, more data is needed, 

alongside the possibility of further pre-

processing, involving additional feature 

selection, prior to training on model, 

specifically selecting highly correlated force 

and moment data alongside omitting data 

that is not.  If features that appear highly 

correlated to the output are combined to 

create a set of new features this could further 

increase the performance of the model 

produced. 

In this pilot investigation the outdoor data 

is compelling with reliability between the 

two riders in classifying position providing 

100% accuracy after a modal moving average 

is applied. Before the application of the 

modal moving average the model appears to 

be nosier than that produced from the WT, 

likely due to the effect of environmental 

conditions associated with outdoor riding. 

From Figure 6 and Figure , data from Rider 1 

demonstrates greater stability with less mis-

classifications of position compared to rider 

2. This can be seen from the raw outputs (blue 

traces) on the plots, additionally this can be 

further seen in Table 1 as rider 1 has a 

classification success of 99.63% compared to 

rider 2’s 99.32%. 

5. Practical Applications 

Overall, it can be concluded that machine 

learning methods can be used to classify 

discrete positions of a rider on a bike. This 

finding provides athletes with the ability to 

optimise aerodynamic position on a bicycle 

using a sensor system, such as the Body 

Rocket system, and bespoke machine 

learning models. The impact of these 

findings offers the possibility for riders to 

train to these positions without the need for 

wind tunnel testing. Moreover, if live on-bike 

feedback is provided, riders can identify for 

themselves when they are maintaining the 

most aerodynamic position during time trial 

situations, likely leading to improved 

performance.   

While in this study we have focused on 4 

discrete positions, future work might explore 

the determination of a continuous range of 

positions which may characterise, for 

example, head, torso, and hip angle.  

6. Conclusions  

The results of this study demonstrate that 

machine learning can be used to classify rider 

position from force and moment data 

collected by the Body Rocket System. In a 

wind tunnel setting less complicated models 

are needed to produce an output of 100% 

classification accuracy with a modal moving 

average. However, applied to a blind dataset 

the models are less accurate. The results from 

the outdoor testing demonstrate 100% 

classification accuracy after applying a 

modal moving average. However, these 

models are more complex, likely due to the 

inherent variability in outdoor conditions.  
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