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Purpose: 
Power is the core metric of performance in cycling. Trainers strive for maximizing  it while engineers strive for 
minimizing its loss by improving equipement and aerodynamic drag. However, costly and specific equipments are 
required to optimize this process. Here, we show that power can be estimated from side data without the need to 
acquire power data itself. More specifically, we show a proof of concept that machine learning can serve to estimate 
metrics with limited equipment or missing data. In this work, we limit the scope at estimating power but aerodynamic 
drag could be estimated in the same spirit. The mechanical power produced by a cyclist can be mathematically 
modeled as: 

𝑃"#$% = '0.5 ⋅ 𝜌 ⋅ 𝑆𝐶/ ⋅ 𝑉%1 + 𝐶3 ⋅ 𝑚𝑔 ⋅ 𝑐𝑜𝑠(𝛼) + 𝑚𝑔 ⋅ 𝑠𝑖𝑛(𝛼)> ⋅ 𝑉?(1) 

where ρ is the air density in kg.m-3, S is frontal surface of the cyclist in m2, Cx is the drag coefficient, Va is the air speed 
in m.s-1, Cr is the rolling coefficient, m is the mass of the rider and bicycle in kg, g in the gravitational constant which 
is equal to 9.81 m.s-2, α is the slope in radian, and Vd is the rider speed in m.s-1. 

This model has been validated in [2]. Despite the reported results - a standard error of 2.7 W and R2 score of 0.97 - 
the experiments fall short since they have been conducted in restricted conditions rather than in real field conditions. 

 
Methods: 
A data set of 417 activities have been collected from 5 riders. These riders have used different power-meters: (i) Saris 
PowerTap, (ii) Rotor Power LT, and (iii) Power2Max, (iv) SRM. All activities contain the following information: power, 
heart-rate, speed, cadence, distance, and elevation. 

In addition to the data provided by the different sensors, the acceleration, slope, and derivative of the heart-rate are 
computed. To enable our model to anticipate some power variations, the data are augmented by computing the 
derivative of the original features for different time windows (i.e. from 1” to 5”). Therefore, each sample consists in 48 
features and is associated to the power measured by the power-meter. Finally, the statistical model is built using a 
gradient boosting algorithm [1].  

 
Results: 
To compare with our model, the power of cyclist is estimated using the mathematical model presented in Eq. (1). Apart 
of the cyclist weights, the parameters have been set to some default values as shown in Table 1. 

These models are validated using a 3-fold cross-validation scheme. In these conditions, the machine learning model 
outperforms the mathematical models with a R2 score of 0.71 and -0.26, respectively while the median absolute error 
(MAE) is 25.1 W and 55.2 W, respectively. An example is presented in Fig. 1. The mathematical modeling tends to be 
more unstable, especially in the descent and flat paths. However, the presented machine learning model does not 
allow to predict abrupt power changes (i.e. sprint). 

We also train the machine learning model by stratifying the data by cyclist. We observed an improved R2 and MAE 
scores for each cyclist. The same example as in Fig. 1 was used for which the machine learning algorithm has been 
trained specifically on the data of the given rider (see Fig. 2). We observe a decrease of the MAE from 20 W to 17 W 
and an increase of the R2 from 0.79 to 0.83. It indicates that in practice, learning a model by cyclist will be more 
appropriate allowing to grasp particularities of each rider – e.g. specific cadence or heart-rate associated with slope. 
In addition, incremental learning algorithms could be used to grasp/forgive those particularities over time – e.g. weeks, 
months.   

The mathematical model is implemented in scikit-cycling while our experiments are available on GitHub. 
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Conclusion:  
This work shows the benefit of using machine learning to model mechanical power in cycling. It is expendable by using 
larger data sets which will be suitable to apply  complex model (e.g. deep neural networks). Also, it opens new avenues 
for future research in which SCx could be estimated in real field conditions using machine learning models. In this 
regard, machine learning model allows to estimate real-time power and SCx without any important infrastructure like 
wind tunnel [3] and should lead to better performance than simple linear regression models [4]. 
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Parameters Values 
Bike weight 6.8 kg 
Rolling coefficient 0.0045 
Atmospheric pressure 1013 hPa 
SCx 0.32 
Temperature 15°C 

Table 1: Default values of mathematical model. 
 
 
 
 
 

 
 

Figure 1. Cyclist power estimate for a single activity: top-left 
and bottom-left scatter plot of the measured and estimated 
power using the mathematical model and machine learning 
model, respectively ; right qualitative results obtained with the 
different models. The red shadow represents the elevation. 
Note that in this case, the machine learning model was trained 
on all riders data. 
 

 
 

Figure 2: Cyclist power estimate for a single activity: top-left and 
bottom-left scatter plot of the measured and estimated power 
using the mathematical model and machine learning model, 
respectively ; right qualitative results obtained with the different 
models. The red shadow represents the elevation. The 
machine learning model has been trained specifically on the 
rider data. 
 


