Open Access

Effects of high intensity continuous and intermittent training strategies used for endurance development on cardio-vascular responses

Balci, GA.¹⊠, Özkaya Ö.¹, As H.¹, Çolakoğlu, M.¹

Purpose:

Purpose of the present study was to examine the potential effects of five high intensity training (HIT) models on central and peripheral components of VO_{2max} .

Methods:

We analysed O_2 consumption (VO₂), cardiac output (Q), stroke volume (SV), heart rate (HR) and arteriovenous O_2 difference (a-vO_{2diff}) in different regimes of HIT during loading and recovery periods. Eight well-trained male competitive cyclists take part in the study (age: 22.1±3.1 years; body mass: 66.2±8.5 kg; height: 175.4±5.2 cm; body fat: 7.2%±1.1%; VO_{2max}: 64±5.61 mL·min⁻¹·kg⁻¹). Following familiarization sessions, VO_{2max} was determined, and then, maximal SV, HR, Q and a-vO_{2diff} (SV_{max}), (HR_{max}), (Q_{max}), (a-vO_{2diff_max}) were evaluated individually using exercise intensities corresponding to 40 to 110% of VO_{2max} separately, by nitrous-oxide re-breathing (N₂O_{RB}) method. Thereafter, training models were performed as; HIT₁: 16 repetitions with power at ~110% of VO_{2max} for 45-sec (16×45-sec, p@~110%VO_{2max}) with 1:1 work and recovery (w/r) ratio; HIT₂: 4×3-min at p@~93%VO_{2max} with 1:1 w/r ratio; HIT₃: alternating the power between VO_{2max} (1-min) and anaerobic threshold (4-min) × 5 repetitions; HIT₄: 25-min constant-load, HIT₅: 6×30-sec at 7,5% body weight with 1:7 w/r ratio. All participants reached exhaustion at all tested HIT models. After the repeated-measures analyses, possible significant differences were investigated by post-hoc LSD/Wilcoxon.

Results:

 T_{spent} above 95% of VO_{2max} was higher in HIT_2 session than other exercise modalities (p<0.05). However, amongst all protocols T_{spent} above 90% of VO_{2max} were not statistically different amongst exercise modalities, except HIT_5 (p>0.05); T_{spent} at VO_{2max} was lowest in HIT_5 (p<0.05). T_{spent} at Q_{max} was higher in HIT_2 and HIT_3 sessions than HIT_1 , HIT_2 and HIT_3 (p<0.05). T_{spent} at SV_{max} was higher in HIT_3 and HIT_4 modalities than HIT_1 and HIT_2 . T_{spent} at 95% of HR_{max} was higher in HIT_2 session than other exercise modalities (p<0.05). T_{spent} at a- vO_{2diff_max} was higher in HIT_1 and HIT_2 than HIT_3 , HIT_4 and HIT_5 (p<0.05).

Discussion:

These results show that different exercise modalities reaching similar VO_{2max} levels may be effective in the development of central or peripheral components associated with VO_{2max} . It may be said that continuous HIT modalities seem to have a higher potential to improve central part of VO_{2max} , while intermittent HIT modalities seems better for peripheral one.

Key words: Aerobic power, maximal oxygen consumption, nitrous-oxide rebreathing, performance, stroke volume.

Contact email:

gorkem.aybars.balci@ege.edu.tr (GA Balci)

¹ Ege University, Faculty of Sport Sciences, Coaching Education Department, Izmir, Turkey

