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Biomechanical assessment of a professional
road cyclist following recovery from severe
Injury: A case report

Jonathan Sinclairlg, Graham Theobaldz, Steve Atkinsl, Sian P Weeksl, Howard T Hurst*

Abstract

The incidence of injury in top level road cyclists is relatively high. In a recent longitudinal study over four years using
a cohort of elite road cyclists it was documented that only 15.6 % remained injury free. Acute fracture injuries
accounted for 48.5 % of the total number of injuries with 26.5 % of these acute injuries being sustained in the lower
extremities. This case report refers to an elite level, professional, road cyclist who returned to competition following
severe fractures to the left femur and right ankle, sustained during a serious road traffic accident. The athlete
reported power imbalances and feeling of dysfunction upon their return to competition. Bilateral 3-D kinematics and
EMG analyses of the lower extremities were obtained. Clear asymmetries were observed in a number of 3-D
kinematic parameters. These suggest an overreliance on coronal and transverse plane motions to compensate for
reductions in sagittal plane movement as a result of the injury. Such outcomes have both clinical and performance
implications which are discussed fully. This innovative use of advanced 3-D kinematic analysis in conjunction with
isokinetic and electromyographic techniques shows the value of sports science support in improving long term

performance outcomes, following a significant period of rehabilitation.
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Introduction

The incidence of injury in top level road cyclists is
relatively high (Barrios et al. 1997 and Bohlmann
1981). In a recent longitudinal study over four years
using a cohort of elite road cyclists it was documented
that only 15.6 % remained injury free (Bernardo et al.
2012). Acute/traumatic injuries accounted for 48.5 %
of the total number of injuries with 26.0 % of these
acute injuries being sustained in the lower extremities
(Bernardo et al. 2012).

In the present study a case report of an elite road cyclist
who has returned from a severe injury is presented. The
participant was involved in a road accident with an
articulated vehicle and suffered severe fractures to the
left femur and right ankle. The injuries sustained
required the insertion of surgical pins to both right and
left sides. The right side was subsequently removed
following sufficient recovery but metalwork securing
the left femur remains in place. The injury required 6
months of recovery before returning to training and
competition. To our knowledge, this case study is the
first to utilise advanced 3-D kinematic analysis to

assess performance function in cycling, following a
serious injury.

Although the associated injuries have now healed and
the cyclist has been cleared medically to return to elite
level competition several complications have emerged
following recovery. Firstly the participant has reported
decreased capacity to maintain power output during
longer races >100km. Secondly the cyclist has reported
low back pain and left hip discomfort during both daily
activities and professional cycling. This has been
attributed to power imbalances and feeling of
dysfunction following the accident. Therefore, whilst it
must be acknowledged that the cyclist is still
competitive at elite level, the participant has indicated
that their performance is diminished directly due to the
injuries sustained in the accident.

The aim of the current case report is to examine the 3-
D kinematics, isokinetic and electromyographic (EMG)
parameters of the cyclist in order to determine whether
any biomechanical asymmetries exist. Key outcomes
will be considered with regard to the influence on
performance, and provide insight into the aetiology of
lower back pain.

Materials and methods

Participants

A single male participant (Age 25 years, Mass 74 kg,
height 1.74 m) was examined. The participant was a
professional cyclist, who had been a national champion
in both road and time trial events. The participant
completed a health screen questionnaire and written
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informed consent was obtained in accordance with the
declaration of Helsinki. Ethical approval was obtained
from the university ethical committee for postgraduate
research.

in each condition 200W, 400W, and 600W. Power
output was determined using a professional model SRm
powermeter (SRm, Jilich, Germany) attached to the
participants own cycle mounted on a CycleOps fluid 2
indoor trainer (Saris, Colorado, USA). Data were
collected for 20 s during each trial and a total of five
trials were obtained. A total of five pedal cycles from
each limb were extracted from each trial. Cadence and
gear choice were self-selected to achieve the required
power output. All kinematic data were captured at
250Hz via an eight camera motion analysis system
(Qualisys Medical, Goteburg, Sweden). Calibration of
the QualysisTM system was performed before data
collection. Only calibrations which produced average
residuals of less than 0.85 mm for each camera for a
750.5mm wand length and points above 4000 in all
cameras were accepted prior to data collection.

The marker set used for the study was based on the
CAST technique (Cappozo et al. 1995). The anatomical
reference frames of the pelvis, left and right thigh, left
and right shank and left and right foot segments were
defined using retro-reflective markers attached to the
1st and 5th metatarsal heads, medial and lateral
malleoli, medial and lateral epicondyle of the femur,
iliac crest, anterior superior iliac spines (ASIS) and
posterior superior iliac spines (PSIS). Hip joint centre
was determined based on the Bell, et al. (1989)
equations via the positions of the PSIS and ASIS
markers. Tracking clusters were positioned on the
shank and thigh. Each rigid cluster comprised four
19mm spherical reflective markers mounted to a thin
sheath of lightweight carbon fibre with length to width
ratios of 2.05-1 and 1.5-1 for the femur and tibia
respectively, in accordance with the Cappozzo et al.
(1997) recommendations. A static trial was conducted
with the participant in the anatomical position allowing
the positions of the anatomical markers to be
referenced in relation to the tracking clusters, following
which they were removed.

EMG

Surface EMG activity was obtained synchronously with
3-D kinematics, at 1000 Hz, from the left and right
Vastus Lateralis (VL), Vastus Medialis (VM),
Gastrocnemius (GM) and Rectus Femoris (RF)
muscles, at 1000 Hz. Biometrics bipolar electrodes
(model SX230) (Biometrics Ltd., UK) with an inter-
electrode distance of 20 mm were utilized. All
electrodes were placed in alignment with the muscle
pennation on the bellies on the muscles in accordance
with the SENIAM guidelines (Freriks et al. 1999). The
skin was shaved and abraded with abrasive paper and
cleaned with ethanol wipes to reduce the amount of
skin impedance. The electrodes and electrode wires
were wrapped on thigh and shank with an elastic
bandage, to prevent dislocation.
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Procedure

3-D kinematics

The participant completed five trials
Isokinetics

An ISOCOM® dynamometer (Eurokinetics Limited,
UK) was used to measure bilateral joint torque of the
ankle (plantar and dorsi flexors), knee (flexors and
extensors), and hip (flexors and extensors) throughout
the available active range of motion. The appropriate
limb was positioned with the anatomical axis of
rotation of the appropriate joint aligned with the axis of
rotation of the lever arm of the dynamometer.
Restraining straps were placed around the shoulders,
chest and waist, with an additional restraint applied to
the thigh (proximal to the knee joint), in order to
stabilize body segments and prevent any extraneous
body movement. All joint motions were conducted at
an angular velocity of 60 °.sec-1. Contraction type was
concentric in flexion and extension with a 1 s rest
period between repetitions. Three maximal efforts from
all three joints were performed for each movement, and
peak power and peak torque were extracted.

Data Processing

All data were normalized to 100% of the pedal cycle
for both right and left limbs. Trials were processed in
Qualisys Track Manager in order to identify anatomical
and tracking markers then exported as C3D files.
Kinematic parameters were quantified using Visual 3-D
(C-Motion, Germantown, USA) after marker data were
smoothed using a low-pass (Butterworth 4th order
zero-lag filter) at a cut off frequency of 15Hz. This cut-
off frequency was determined from identifying the
frequency where 95% of the signal content was
maintained. 3-D kinematics of the hip, knee and ankle
joints were calculated using an XYZ cardan sequence
of rotations where X = sagittal; Y = coronal plane and
Z = transverse plane rotations (Sinclair et al. 2012a). In
addition to this 3-D movements of the pelvis segment
were reported relative to the lab co-ordinate system. 3-
D kinematic measures from the hip, knee, ankle and
pelvis which were extracted for statistical analysis were
1) angle at top dead centre 1 (TDC1), 2) angle at top
dead centre 2 (TDC2), 3) range of motion during the
pedal cycle (ROM), 4) peak angle during the pedal
cycle and 5) relative range of motion from TDC1 to
peak angle.

The EMG signals from each muscle were full wave
rectified and filtered using a 20 Hz Butterworth zero
lag low-pass 4th filter to create a linear envelope. EMG
data from each muscle were normalised using the peak
pedal cycle EMG amplitude obtained at 600 W from an
ensemble average of the three completed trials (Sinclair
et al. 2012b). EMG measures extracted were; the mean
normalized amplitude during the pedal cycle (%
NORM).
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Statistical Analyses

Descriptive statistics
(means and standard
deviations) were

calculated for the
outcome measures using
SPSS 19.0 (SPSS Inc,
Chicago, USA).

Results

The data indicates some
notable bilateral
imbalances in  3-D
kinematics across a

range of power outputs
(Table 1-4 & Figure 1-
2). In addition bilateral
imbalances were also
observed in  muscle
recruitment  magnitude
and also isokinetic peak
force development
(Table 4-5 & Figure 3).
These findings may
point towards reduced
bilateral function.
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Figure 1. Hip, knee and ankle joint kinematics in the a. sagittal, b. coronal and c. transverse planes (Black = right limb
& Grey = left limb) Solid line = 600, Dashed line = 400 and Dotted line = 200W.
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Figure 2. Hip, knee and ankle joint kinematics at 600W in the a. sagittal, b. coronal and c. transverse planes (Black =
right limb & Grey = left limb), Solid line = 600, Dashed line = 400 and Dotted line = 200W.
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Discussion

The aim of the current
case report was to GM VL ViV RF
examine the 3-D a. a. a. a.
kinematics, isokinetic
and
electromyographic
(EMG) parameters of
an elite cyclist who
has returned to
competition following
a severe trauma. This
case report represents
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first to document the GM vV RE
resultant b. b. ' b.

biomechanical and
neuromuscular profile
following an injury of
this nature.

The results indicate
that the cyclist
exhibits a number of
asymmetrical
imbalances. At the hip
joint, the left limb is
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sizeable increases in GM VL ViV RF
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relative  range  of
motion in comparison : | '
to the right side. The ‘
values obtained for
the left side are
considerably  greater

than those

documented by

Umberger and Martin, \

2001) and Gregor T 10 T L= )
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This was evident at all Figure 3. EMG patterns from the GM, VL, VM and RF a. 600, b. 200 and c. 600 W (Black = right limb & Grey = left
levels of  power jimp).

output. It is . )

hypothesized that this is attributable to a lack of torque support for this notion. As the upper left musculature
and power production, and serves as an adaptive was found to be comparatively weaker than the right, it
mechanism as a result of the injury. Hip extension, to is likely that the left S|d_e_ generates e>§tra force fro_m
bottom dead centre, has been linked strongly to the muscle groups and stabilizers supporting the pelvis.
transfer of power to the pedals during cycling (Elmer et This may be the reason that the left pelws is tilted to
al. 2011). the left for the entire pedal cycle. This may also have
In addition, the left hip was also associated with clinical implications for the development of lower back
increases in both coronal and transverse plane relative pain reported by the participant. The continual
ranges of motion. This may relate to the reduction in leftwards tilting of the pelvis, due to increases in
power production in the left limb which may require sagittal plane relative range of motion, in conjunction
additional contributions from outside the sagittal plane with increases in adduction and internal rotation ranges
in an attempt to maintain balance. The values extracted of motion may facilitate the development of lower back
from the analysis of pelvic kinematics provide further pathology.

Journal of Science and Cyding Page 8



Sinclair et al. (2013). Biomechanical assessment of a professional road cyclist following recovery from severe injury: A case report.

Journal of Science and Cycling, 2(1): 1-10

Table 5. Normalized EMG amplitudes (means and standard deviations) from the right and left limbs.

600 W
Right Left
GM (% NORM) 0.29 +0.03 0.19 +0.02
VL (% NORM) 0.44+027  0.21+0.007
VM (% NORM) 0.30 + 0.06 0.23 +0.02
RF (% NORM) 0.26 + 0.02 0.33 +0.06

At the knee joint the left limb was
associated with reductions in sagittal
plane relative range of motion in
comparison to the right. This is
consistent with the reductions in
isokinetic extension power and torque,
and may relate to the injury sustained
to the left femur. This may be a
compensatory mechanism in relation
to the large increases in hip relative
range of motion. This bilateral
difference was not as pronounced as at
the hip joint and the values quoted
remained similar to those extracted by
Umberger and Martin, (2001) and
Gregor and Conconi (2000). In
addition, the left knee is also associated with increases
in coronal plane abduction when compared to the right.
This has potential performance implications as
increases in knee abduction have been shown to reduce
the extent to which the rider can apply force to the
pedals (Bini et al. 2009).

At the ankle joint, although the sagittal plane
waveforms were qualitatively similar the right limb
was associated with greater plantar flexion throughout
the pedal cycle across all power outputs. The right
ankle angulation in the sagittal plane differed in
magnitude from the values documented by Umberger
and Martin, (2001) who found that the ankle was less
dorsiflexed throughout the pedal cycle. The right ankle
was also associated with sizeable reductions in peak
isokinetic plantar flexion torque and power output. It is
likely that this relates to dysfunction due to the injury
sustained to the right ankle whereby the cyclist is
unable to achieve the same levels of dorsiflexion in
comparison to the left.

The EMG analyses revealed that, in general, the right
side was associated with greater muscular recruitment
across all power outputs when compared to the left.
This is consistent with the kinematic and isokinetic
observations, and is likely to be a compensatory
mechanism for the lack of power delivery from the left
side. Of particular interest is the double firing rate in
the right GM in comparison to the left. This again may
relate to a lack of power in the left side, whereby in
addition to contraction at 90°, to the GM also contracts
on the upstroke at 270° around to stiffen the ankle joint
and assist in hip musculature and aid right side hip
musculature pull the crank around to compensate the
potentially reduced force application of the left limb.

limbs.

Hip

Knee

Ankle
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400 W 200 W
Right Left Right Left
0.24 + 0.05 0.13 +£0.02 0.13 + 0.009 0.11 + 0.09
0.19 + 0.04 0.13 +£0.09 0.15 +0.04 0.12 + 0.008
0.19 + 0.006 0.18 +0.14 0.12 +0.04 0.11 +0.08
0.16 £ 0.02 0.23 £0.03 0.13 £ 0.05 0.19£0.01

Flexion
Extensi
Flexion
Extensi
Plantar

Dorsi

Table 6. Isokinetic torque and power parameters (means) from the right and left

Torque (Nm) Power (W)
Right Left Right Left
167.8 127.8 132.0 111.9
on 161.1 116 109.6 91.6
106.6 103.3 91.8 86.5
on 220.5 167.1 180.0 133.9
57.6 75.2 169.2 459.6
21.5 23.6 16.9 26.2

This may also relate to the injury sustained to the right
ankle joint whereby the observed firing patterns of the
GM serve as a protective mechanism to avoid any
further discomfort/ injury to the affected area.
Considering the consistent and considerable decrease in
power of the left side musculature, it is likely that early
onset fatigue is understandable and expected. Cycling
is reliant on bilateral balance in power output and
stability across the joints and musculature (Carpes et al.
2010). Imbalance of this nature means that the right
side fatigues earlier than normal and there is resultant
compensation. During longer races in excess of 200km
it is inconceivable that the right side can compensate
fully for these dysfunctions. It should be re-stated that
the cyclist is still able to compete at the highest level,
but it is highly likely that this injury is currently having
a negative influence on his career although the extent to
which performance is affected is difficult to determine.
In conclusion whilst the cyclist has returned to function
and been medically cleared to resume competition
following surgery and rehabilitation, the questions as to
whether sport specific function has been restored, and
whether every day and sport specific function are
distinct remains. It is likely, and recommended, that the
cyclist will require considerable rehabilitation on the
areas outlined in these analyses to return to pre-
accident levels of cycling performance. Based on the
observations of the current investigation it is
recommended that the cyclist seek to re-establish
bilateral symmetry and range of motion across all lower
extremity joints and musculature. This will involve
strengthening exercises applied to the left limb hip
flexors (illipsoas, rectus femoris, and psoas major) and
extensors (gluteus maximus and hamstrings). It is also
advocated that strengthening exercises should be
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undertaken for the right side ankle plantar
(gastrocnemius, soleus and tibialis posterior) and dorsi
flexors (tibialis anterior). In addition, given that the
core musculature provides the foundation from which
pedal force is generated and serves to maintain the
neutral pelvic position on the bike (Mellion, 1994). It is
therefore recommended that the cyclist also incorporate
core training exercises into his training regimen. It is
likely that this will need to be undertaken after the
associated metalwork is removed as this may well be
inhibiting performance further. Once the rehabilitation
is complete the best way forward would be to re-test
using the same protocol in order to determine the
degree of recovery.
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