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Abstract 
A large portion of a cyclist’s power is consumed by air drag. Opposing force power meters measure air drag with a 
wind sensor. In cross winds the bicycle and rider experience a different air drag than that informed by a conventional 
wind sensor. The main objective of this study is to quantify this error as a function of wind yaw. Additionally, if power 
is independently measured with a direct force power meter, we estimate the drag area (CdA) as a function of wind 
yaw without using a yaw sensor. 1- We use exact equations to estimate air drag from airspeed and wind yaw instead 
of approximate equations and a conventional wind sensor that responds to the axial component of the airspeed 
called inline airspeed. 2- We describe a novel method for estimating air drag using a conventional wind sensor under 
naturally-occurring wind conditions, where the missing wind yaw data is inferred from ground speed, heading and 
the prevailing wind velocity. The prevailing wind is identified as a vector by analyzing ground speed, inline air speed 
and heading data. Wind yaw that is estimated by this method is called the virtual wind yaw. Our test results suggest 
that a state-of-the-art opposing force power meter, namely the iBike Newton, systematically underreports the total 
power when the wind yaw is large. We show that the virtual wind yaw approximation often returns a more accurate 
estimate of instantaneous power than a conventional opposing force power meter. When a bicycle is equipped with 
a speedometer, an inclinometer, a conventional wind sensor and a direct force power meter, the redundancy in the 
data allows us to determine the constituent components of the total power including the aerodynamic power. It also 
allows us to determine the CdA as a function of wind yaw, as well as the time and energy spent within a given range 
of wind yaw angles. The accuracy of an opposing force power meter can be improved by using exact equations with 
input from a wind yaw sensor (e.g., a wind vane).  
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Introduction 
Equations for calculating the power output of a cyclist 
under no-wind and direct headwind conditions are 
given by Whitt and Wilson (1974). The 3rd edition of 
the book, Wilson and Papadopoulos (2004), discusses 
“rules of thumb” for direct cross winds, and suggests 
that faired (streamlined) vehicles can generate thrust 
from cross winds. Isvan (1984) gives equations for the 
power needed for riding unfaired bicycles under 
arbitrary wind conditions. Brandt (1998) compares the 
predictions of these equations with wind tunnel data 
given by Douglas Milliken (1987) and draws practical 
conclusions relevant to road cycling. In all cases the 
power required to move a bicycle at a given speed is a 
nonlinear function of the wind velocity. That is, both 
the magnitude and the direction of the mass flow rate 
relative to the bicycle are relevant.  
Bicycle power meters have become available to 
consumers, and some cyclists use them for real time 
feedback and training purposes. Power is the product of 
force and velocity (torque and angular velocity for 
rotating components). All cycling power meters 

estimate power by effectively calculating this product, 
but they are differentiated by which quantities are 
measured and which ones are inferred. In Direct Force 
Power Meters (DFPMs), torque is inferred typically by 
measuring mechanical strains in a rotating drive train 
component such as a crank arm or wheel hub. This 
torque is then multiplied with the rotational speed of 
the component to calculate power. Cycling power is 
expanded against distinct categories of opposing forces 
that arise from climbing, air resistance, accelerations, 
etc. Martin et al (1998) define these power components 
and construct a mathematical model for estimating the 
total cycling power and itemizing its components. In 
Opposing Force Power Meters (OFPMs) propulsion 
force is inferred by measuring hill slope, bike speed, 
acceleration and wind resistance, and using these 
values in equations that include user-specific 
calibration constants. The total opposing force is then 
multiplied with the bike speed to estimate power. 
Compared to DFPMs, OFPMs offer the benefit of 
potentially itemizing the constituent components of 
power (Equation 4), although the OFPMs that are 
commercially available at the present time do not 
itemize all of them. OFPMs also tend to be less 
expensive and do not require modifying or replacing 
original components of the bicycle. But whether an 
OFPM can estimate power as accurately as a DFPM is 
a matter of debate.  
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One of the factors that limit the accuracy of 
conventional OFPMs is the attempt to estimate air drag 
without measuring the wind direction. We analyze the 
performance of a state-of-the-art OFPM, the iBike 
Newton™ relative to a DFPM (PowerTap®) and 
provide evidence of a correlation between the relative 
discrepancy of their readings, however small, and wind 
yaw. Wind yaw (apparent wind angle) is the angle of 
the airflow relative to the direction of travel, which can 
be measured, for example, with a bicycle-mounted 
wind vane. A 3-way comparison between a DFPM 
(PowerTap) and two OFPMs (iBike Newton and Power 
Analyzer) on two test rides confirms that the iBike 
Newton’s measurement discrepancy relative to the 
PowerTap is consistent with the use of approximate 
equations to calculate power from the inline component 
of the apparent wind. Power Analyzer is a post-
processor, developed by the author, which calculates 
power using exact equations where wind yaw (i.e., 
apparent wind angle) is an input variable. If the 
recorded ride data does not include wind yaw, Power 
Analyzer infers it from the prevailing wind calculated 
from ground speed, air speed and heading data (see 
Figures 2, 7 and 8). This inferred variable is called the 
virtual wind yaw. With strong and steady winds, when 
the wind yaw data is set to 0°, Power Analyzer’s 
estimate of power is closer to the iBike (Figure 1). 
With virtual wind yaw, it is closer to the PowerTap 
(Figure 11). 

The Virtual Apparent Wind model is still an 
approximation, because the instantaneous wind velocity 
is, in general, different than the prevailing wind 
velocity. But when the wind is strong and steady, as it 
was during the test rides chosen for this study, the 
Virtual Wind Yaw model is significantly more accurate 
than the scalar wind model implemented in the iBike 
Newton (Table 1). It stands to reason that even more 
accurate power measurements would be achieved with 
an OFPM if the wind yaw were measured (e.g., with a 
wind vane) instead of being estimated from the 
prevailing wind. Furthermore, when neither the actual 
wind yaw nor the prevailing wind can be measured 
with on-board instruments, the application of the 
Virtual Wind Yaw method and the use of exact 
equations (Equation 1) would likely lead to greater 
OFPM accuracy than approximate equations, if the 
prevailing wind data could be obtained from a 
meteorological database. 
 
Background 
The wind sensor used in iBike power meters is a 
differential pressure sensor (Pitot tube) that responds to 
the stagnation pressure generated by the inline or axial 
(“front-to-back”) component of the mass flow rate of 
the airflow relative to the bicycle. This technology is 
successfully used in aviation instruments to measure 
airspeed, which is a scalar quantity. In aviation, 
heading and track are two different variables. Heading 

 

 
 
Figure 1. Power estimates from an OFPM (iBike –red curve), a DFPM (PowerTap –green curve), and from exact equations (Power Analyzer –black 
curve) where wind yaw is intentionally set to 0° to predict the iBike’s behavior. 
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Table 1. Comparison of OFPM models and sensor configurations relative to the DFPM . 
 

Description of the OFPM model Model assumes that air 

drag is proportional to 

% of time with greater than 30% 

discrepancy to DFPM power 

Scalar wind approximation (iBike Newton with cross fin) (OB)2 17.4% 

Scalar wind approximation (iBike Newton without cross fin) (OB)2 8.6% 

Virtual apparent wind approximation (cylindrical model) (OC’)2 ∙  cos (AOC’) 4.7% 

Virtual apparent wind approximation (variable CdA model) (OC’)2 ∙  cos (AOC’) ∙ λ 2.9% 

Exact Solution with vector wind sensor (cylindrical model) (OC)2 ∙  cos (AOC) -- 

Exact Solution with vector wind sensor (variable CdA model) (OC)2 ∙  cos (AOC) ∙ λ -- 
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is the direction that the nose of the airplane is pointed 
at; track is the direction of the plane’s movement with 
respect to the ground. In normal flight heading and 
track are generally different so that the apparent wind is 
always a direct headwind (there is no wind yaw). In 
contrast, a bicycle interacts with two media (ground 
and air), and normally the wheels roll on the ground 
without significant side slip. As a consequence, a 
bicycle’s heading and track are always the same, and 
the apparent wind velocity is a vector with an angle 
relative to the bike. This angle is called wind yaw. In 
this respect bicycles have more in common with 
sailboats than with airplanes. The keel of a sailboat is 
the equivalent of the wheels of the bicycle. 
Because the maximum sensitivity axis of the wind 
sensor of a conventional OFPM coincides with the 
direction of the air drag we wish to measure, it is 
tempting to assume that the air drag acting on the 
bicycle and rider could be estimated from the output of 
this sensor without a need to measure the wind yaw. 
But there are two reasons why this assumption is not 
valid.  
CdA (a.k.a drag area) depends on wind yaw. For a 
person riding a bicycle, the front-CdA is generally 
smaller than the side-CdA. Front-CdA applies when the 
wind yaw is 0° (e.g., with direct headwinds or when 
there is no wind). The angle-dependence of CdA is 
more significant for recumbent and tandem bicycles, 
bicycles with “aero bars”, disc wheels, bladed spokes, 
etc, than for conventional road racing bikes. But it is 
significant for all types of bicycles (Martin et al, 1998).  
Even with simplified aerodynamic models where CdA 
is assumed to be constant with wind yaw (the object 
dragged through the air is modeled as a vertical 
cylinder), air drag is proportional to the axial 
component of the squared airspeed; it is not 
proportional to the square of the axial component of the 
airspeed. A forward-facing Pitot tube measures the 
latter quantity instead of the former.  This situation may 
be visualized with the help of Figure 2 where the scalar 
quantity that the iBike power meter records as “wind 
speed” is represented by the length of the base of the 
big triangle (the horizontal blue arrow). But in order to 
compute air drag accurately, the hypotenuse of the 
triangle (the apparent wind velocity) must be known as 
a vector. The square of the hypotenuse represents the 
aerodynamic force, and air drag is the projection of this 

force onto the direction of travel. In mathematical 
terms where w represents the magnitude and β the 
angle of the apparent wind velocity, the quantity (w2 
cos β) and the quantity (w cos β)2 are not equal. Air 
drag is proportional to the former quantity, but 
conventional OFPMs measure the latter quantity 
instead. For sufficiently small wind yaw angles (β) this 
error may be negligibly small, but as the wind yaw 
angle grows, so does the error. 

 
 
Figure 2. Birdseye view of the cyclist with a graphical representation of the 
physical relationships between wind speed, bike speed, apparent wind speed 
and apparent wind angle (wind yaw). Note the different wind directions 
indicated by flags on the ground and on the moving bicycle. 
 

 
 
Figure 3. Aerial view and GPS track of the test course. 
 

 
 
Figure 4. Weather forecast for the test ride. The red rectangle identifies the 
time window chosen for the test. 
 

 
 
Figure 5. Example snapshot from the test ride. 
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This error is rooted in the fact that force 
is a vector, while pressure (normal force 
per area) is a scalar. This may be 
visualized by the following 
consideration: conventional OFPM 
technology is based on the principle of 
measuring the air drag with a 
measurement probe. A forward-facing 
Pitot tube, such as the wind sensor used 
in the iBike Newton power meter, is 
equivalent to a load cell that measures 
the normal force acting on a flat 
measurement probe held perpendicular 
to the direction of travel. But for the 
measured quantity to scale with the air 
drag acting on the bicycle and rider, the 

probe must not be flat. The ideal probe would have the 
same 3D aerodynamic profile as the bicycle and rider, 
and the load cell would measure the axial component of 
the force acting on the probe. 
To reduce the error in cross winds imposed by these 
two factors, the iBike Newton power meter 
features a passive component called a “cross 
fin”. The intended purpose of this part is to 
locally modify the airflow in the vicinity of 
the air intake of the wind sensor in such a 
way that the sensor’s output remains 
proportional to the air drag acting on the 
bike and rider across a wide range of wind 
yaw angles.  
In theory the cross-fin solution seems 
plausible. However, when the output of an 
iBike Newton (OFPM with cross fin) was 
compared with that of a reference DFPM 
(PowerTap), it was observed that sometimes 
the iBike reports less power than the 
PowerTap. Figure 1 illustrates an example 
of this phenomenon. Note the relatively poor 
agreement around the 6 – 7 km mark. In a 
normal bike ride this happens in rather rare 
occasions. Our hypothesis is that the 
discrepancy results from the use of a scalar 

wind sensor and approximate equations that 
systematically underestimate the air drag when the 
wind yaw is large. 
The original objective for this project was to test this 
hypothesis by looking for a statistical correlation 
between large wind yaw angles and large discrepancies 
between the readings of OFPMs and DFPMs. While 
performing test rides for this purpose it became evident 
that in the absence of an instrument to measure wind 
direction, the (unknown) wind yaw can be estimated 
from the scalar wind speed measured with the iBike 
power meter, provided that the speed and direction of 
the bike and the prevailing wind are also known. 
Furthermore, it was discovered that by substituting this 
estimated virtual apparent wind for the instantaneous 
apparent wind in the exact equations, the instantaneous 
power is estimated with greater accuracy than with the 
iBike Newton with or without the cross fin. This 
discovery became the subject of further investigation 
that led to the development of an algorithm for 
improving the accuracy of an OFPM without using a 
wind direction sensor. It also paved the way to 
developing a method for determining the CdA of a 
person riding a bicycle as a function of wind yaw 

 
 
Figure 8 The instantaneous Virtual Apparent Wind velocity (Line C’O) is computed from 
the prevailing wind velocity (Line C’A) and bike speed (Line OA). Point C’ is an 
approximation to the unknown point C. 

 

 
 
Figure 6. Some of the relevant statistics of the test ride with cross fin (screenshot from Power 
Analyzer). 
 
  

 
 
Figure 7. Identifying the prevailing wind as a vector 
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(apparent wind angle) without using a wind tunnel, 
from ride data recorded during a bike ride. 
It should be noted that this method for estimating the 
virtual apparent wind vector requires a sufficiently long 
period of strong and steady wind conditions that are 
persistent throughout the course. Such conditions are 
rarely the case in normal cycling. 
 
Test method and results 
We wanted to test our hypothesis with an instrumented 
bicycle, but an instrument to measure the wind yaw and 
record it in sync with OFPM and DFPM data was not 
available. This led to the idea of calculating wind yaw 
from the prevailing wind velocity, which could be 
inferred from the recorded “wind speed” (i.e., inline 
airspeed) and heading data. The idea was that since the 
instantaneous wind direction relative to the ground has 
a greater likelihood of coinciding with the prevailing 
wind direction than with the bicycle’s heading, exact 
equations with this “virtual apparent wind” would have 
a greater likelihood of returning an accurate estimate of 
air drag (and consequently power), than the 
approximate equations implemented in conventional 
OFPMs. This hypothesis was tested with two test rides 

(one with, one without cross-fin) that meet the 
following requirements: 
Strong and steady wind in an open area free of 
obstructions 
Numerous headings in as many directions as possible 
Flat terrain (air drag must be the principal constituent 
of the total opposing force).  
Low traffic density. 
A 110 km test course that meets these requirements is 
shown in Figure 3. 
The course was laid out on a grid of farm roads with 3 
rectangular loops that are angled relative to each other 
so that the course includes as many headings as 
possible. For each of the 2 test rides, each of the 3 
loops was ridden twice in each direction (clockwise and 
counterclockwise) resulting in a total of 12 loops over 
approximately 110 kilometers ridden in approximately 
4 hours. Wind conditions forecasted for the duration of 
the test ride with the cross fin is shown in Figure 4.  
The test ride without the cross fin was performed under 
similar conditions. 
A snapshot from the video recording of the test is given 
in Figure 5 to illustrate the favorable conditions.  
After the test ride, the recorded data was analyzed. 
Figure 6 includes selected statistics, which are given 

 
 
Figure 9. Comparison between two power estimation methods for OFPMs: Scalar Wind method represented by iBike, and Virtual Apparent Wind 
method represented by Power Analyzer. 
 



Isvan (2015). Wind speed, wind yaw and the aerodynamic drag acting on a bicycle and rider. Journal of Science and Cycling, 4(1): 42-
50 
 

 

for reference only. The large 
share of the aerodynamic energy 
should be noted. 
 
Data synchronization 
The ride data recorded by the 
iBike Newton power meter 
includes (among others) the 
following variables: 
Axial projection of the apparent 
wind velocity, a scalar variable 
indicated by the horizontal blue 
arrow in Figure 2. In the iBike 
documentation this scalar is 
called “wind speed”, but we refer 
to it as the inline airspeed.  

• Hill slope 
• Bike speed 
• iBike-estimated power 
• PowerTap-estimated 

power.  
The data acquisition rate was set 
to 1 sample per second.  
The iBike-proprietary data file is 
uploaded to a personal computer, 
analyzed using iBike’s Isaac 
software, and exported as a data 
file in CSV (Comma Separated 
Values) format. In addition to the 
variables recorded by the iBike 
Newton power meter, the 
exported CSV file also contains GPS location 
coordinates downloaded from the iBike Cloud, which 
have been recorded during the test ride by iBike’s 
Newton Tracker app running in a mobile phone located 
in the rider’s pocket. These location coordinates are 
automatically synched with the rest of the ride data by 
the Isaac software. The CSV file contains all the input 
data for Power Analyzer, which is a spreadsheet 
program. 
 
Prevailing wind 

The first step of our analysis is the identification of the 
prevailing wind. Figure 7 is a scatter chart of the iBike-
measured scalar “wind speed” that we call the inline 
airspeed, plotted against heading.  
Each point on the red curve in Figure 7 is the average 
of all scatter points (green dots) that have headings 
within ±5 degrees of the point being plotted. Thus, the 
speed and direction of the prevailing wind velocity are 
indicated by the vertical and horizontal coordinates, 
respectively, of the peak value of the red curve. For the 
ride under investigation, these values are 19.3 km/h and 

 

 
 
Figure 10. Power ratio as a function of wind yaw. The value at 0° reflects the power meter’s sensitivity calibration, which is not the subject of this 
study but given for completeness. We pay attention only to the normalized shape of the curves 
 

 
 
Figure 11. 3-way comparison between a DFPM (PowerTap), the Scalar Wind model (iBike), and the 
Virtual Apparent Wind model with variable CdA and μ = 1.2. The lowest trace shows the virtual 
apparent wind angle. The actual apparent wind angle was not measured. 
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283 degrees, respectively. It was noted that these values 
concur with the regional weather forecast (Figure 4) 
obtained prior to the ride. 
 
Virtual Apparent Wind 
Because the ride data does not include the apparent 
wind velocity (coordinates of Point C in Figure 8) for 
each data sample, these values are estimated from the 
prevailing wind vector identified in the previous step. 
The resulting vector (C’O) is called the “virtual” 
apparent wind velocity. In effect we use the virtual 
point C’ as an approximation to the unknown point C. 
The rationale for this process is the following: 
The power estimation algorithm used in the iBike 
Newton returns results that are consistent with an 
assumption that air drag is proportional to the square of 
the length of Line OB in Figure 8. Indeed, when the 
apparent wind angle (AOC) is sufficiently small, the 
difference between the quantities [(OB)2] (Scalar Wind 
approximation used by iBike) and [(OC)2  · cos (AOC)] 
(exact solution for constant CdA –i.e., the cylindrical 
aerodynamic model) becomes negligibly small. But 
with strong cross winds or quartering tailwinds the 
apparent wind angle (BOC) can be arbitrarily large, in 
which case the Scalar Wind approximation would 
result in underestimating the air drag.  
In addition, with strong cross winds the exact equations 
applied to the cylindrical model would also 
underestimate the air drag, because a person riding a 
bicycle is an object that is somewhat streamlined in the 
forward direction. 
Our solution is to estimate the apparent wind velocity 
(Line CO) as a vector. The prevailing wind velocity, 
inferred from ride statistics as a vector as illustrated in 
Figure 7, is represented by the arrow at the lower left 
corner of Figure 8. The vector equations used in Power 
Analyzer for computing the virtual apparent wind 
velocity (Equations 1 and 2) are graphically analogous 
to parallel-moving this arrow and inserting it into the 
vector diagram as Line (C’A). The resulting virtual 
apparent wind velocity, Line (C’O), is used as an 
approximation to the unknown apparent wind velocity, 
Line (CO). 
It was found that for the two test rides conducted for 
this study (one with, one without cross fin), the virtual 
apparent wind approximation results in significantly 
less error in power than the scalar wind approximation. 
Perhaps more importantly, modeling the wind velocity 
as a vector allows us to use CdA values that are variable 
according to a predetermined function of the apparent 
wind angle (wind yaw), which results in further 
reductions in error.  
In Table 1, power estimates from two models, the 
scalar wind model and the virtual apparent wind model 
are compared, and their respective “errors” (differences 
relative to the DFPM) are tabulated. Here, λ is an 
empirically determined nonlinear function that defines 
how CdA changes with apparent wind angle for the 
particular bicycle and rider –see Equation (2). 
In Table 1, the “error” of an OFPM is defined as the 
percentage of data points where the absolute value of 

the difference between the OFPM and DFPM powers 
exceeds 3% of the DFPM power (the wind sensor’s 
sensitivity scalar is adjusted until the mean value of this 
difference is reduced to zero). The reduction in this 
quantity from 17% (scalar wind approximation) to 3% 
(virtual apparent wind approximation) can be 
visualized from the scatter plots in Figure 9, where the 
ratio of OFPM power to DFPM power is plotted for 
every data sample. The ideal distribution of scatter data 
would be a maximum density of 1’s forming a 
horizontal cluster. A visual inspection of Figure 9 
reveals that Power Analyzer (virtual apparent wind 
approximation with variable CdA) approaches that ideal 
more closely than the iBike Newton (scalar wind 
approximation with constant CdA) with or without 
cross fin. If actual data from a wind direction sensor 
were available (a wind vane, for example), the exact 
equations used in Power Analyzer would likely return 
even more accurate results. It should be noted that for 
this test to be valid, the reference DFPM (PowerTap) 
does not need to be accurate; it only needs to be 
consistent (not affected by wind yaw). 
It is noted that the ‘cross fin’ accessory of the iBike 
Newton power meter spreads the wind  
sensor’s response across a wider range of wind angles, 
but this results in a decrease, rather than an increase, in 
the overall correlation with the DFPM power.  
As expected, the application of the variable CdA model 
results in better OFPM performance (a significant 
reduction in the frequency of above-threshold errors, 
from 4.7% with the cylindrical model to 2.9% with the 
variable CdA model with µ = 1.2).  
The statistics for the virtual apparent wind model in 
Table 1 are drawn from the test ride recorded with the 
cross fin (the default configuration for the iBike 
Newton power meter). The variable CdA method 
compensates for the effect of the cross fin, because the 
model parameters are tuned for the particular wind 
sensor with which the wind was measured. “Parameter 
tuning” refers to the process of determining the 
sensor’s sensitivity, the speed and direction of the 
prevailing wind, and the parameter μ that defines the 
directivity function λ (see Equation 3), so as to 

 

 
 
Figure 12. The relationship between CdA and wind yaw 
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minimize the “error” relative to the DFPM, of the total 
energy (or average power) for the entire test ride.  
The directivity function λ is defined by a single 
constant μ that represents the ratio of side- CdA to 
front- CdA. This constant is called the aerodynamic 
aspect ratio (Equation 2). For relatively streamlined 
objects such as recumbent and tandem bicycles, tucked-
in racing positions, faired bikes, time trial bikes with 
aero bars, disc wheels, bladed spokes, etc., this constant 
is relatively large. For upright riding positions on 
standard bikes it is relatively small but still greater than 
1. For a vertical cylinder, μ = 1.0. For the test ride 
conducted without the cross fin where the wind sensor 
is modeled as a standard Pitot tube, the power 
correlation between Power Analyzer and DFPM 
reaches a maximum when μ = 1.2. 
Figure 10 is made to remove the scatter from Figure 9. 
Each curve in Figure 10 is made of points representing 
average OFPM / DFPM power ratios for data samples 
with virtual apparent wind angles within ±5° of the 
corresponding horizontal coordinate. The ideal curve 
would be a horizontal line at 1.0 (total agreement with 
DFPM). 
In Figure 10 negative and positive wind yaw angles 
have been averaged to impose symmetry in an attempt 
to suppress random error and highlight systematic 
error. However, some asymmetry may be caused by the 
non-symmetric location of the static pressure port of 
the differential pressure gauge in the iBike Newton 
power meter. 
The more familiar format of presenting ride data as a 
time sequence (e.g. Figure 11) confirms these results, 
but it is difficult to see patterns when zoomed out 
enough to include a statistically relevant number of 
data points. Therefore, only an exemplary 15 km 
segment of the 110 km test ride is shown where the 
effect is particularly noticeable.  
The results presented in Figures 9 – 11 are obtained 
from special test rides designed to maximize the 
aerodynamic component of the total energy. In typical 
rides with significant hills and accelerations, these 3 
power meters (iBike Newton, Power Analyzer and 
PowerTap) track each other better, except for the 
occasional congruence of conditions as shown in 
Figure 1.  
 
 
 
CdA as a function of wind yaw 
Just as power can be calculated from ride data when 
CdA is given; so can CdA be calculated when power is 
given. Thus, if the inline airspeed, GPS heading, hill 
slope, bike speed and DFPM power have been recorded 
for a bike ride with a steady prevailing wind, the 
Virtual Apparent Wind method can be applied to 
express CdA as a function of wind yaw (Figure 12). 
Here, the bike and rider parameters are: 179 cm, 64 kg 
rider, seated pedaling, hands on brake hoods, standard 
road racing bike, wire-spoked wheels without 
aerodynamic enhancements. 

When interpreting Figure 12 with respect to other 
studies, two points should be taken into consideration.  
Due to the definition of variables, the quantity shown 
as “drag area” in Table 1 of the article by Martin et al 
(1998) corresponds to the product of effective drag area 
and the cosine of wind yaw in our analysis. 
Figure 12 is based on the assumption that when the 
cross fin is removed, an iBike Newton power meter 
measures the axial component of the mass flow rate 
(the length of the line segment BO in Figure 8), as 
would a normal Pitot tube in theory. This assumption is 
not validated, but Figure 12 is included here to 
demonstrate the potential utility of the experimental 
method. For accurate assessment of CdA vs wind yaw, 
the wind sensor’s angular sensitivity pattern (polar 
directivity function) must be independently known.  
The Virtual Apparent Wind method may be used for 
cross-referencing CFD analysis or wind tunnel test 
results. For some applications this information may be 
particularly valuable because statistically relevant data 
are obtained from actual bike rides on existing roads 
under naturally occurring wind conditions. 
 
Equations 
Air drag FX is the inline (front-to-back) projection of 
the aerodynamic force F acting on the bicycle and rider 
(Equation 1). 
 
Air drag  = 
 

   (1) 
 
where ρ is air density, and w and β are the apparent 
wind speed and apparent wind angle (wind yaw), 
respectively, as illustrated in Figure 2. Cd (effective 
drag coefficient) and A (effective area) are functions of 
β. We denote the frontal CdA as (CdA)0, so that  
 

( ) ( )βλρ cos][5.0 2
0 ⋅⋅⋅⋅⋅= wACF dX   (2)  where 
 

λ = cos2 β + μ sin2 β    (3)  

 
is the directivity function, μ being the aerodynamic 
aspect ratio (the ratio of side-CdA to front-CdA) of the 
particular bike and rider. The value of μ is empirically 
determined to be ≈ 1.2 for a typical riding position on a 
standard road racing bike, which was used during both 
test rides. 
Aerodynamic power, Paero, is equal to the product of 
ground speed u and air drag Fx.  
The total power at the pedals, Ptotal is: 
 
Ptotal = Paero + Pclimbing + Prolling + Pinertia + Pmech (4) 

 
The 5 terms to the right of the equal sign are the powers 
expended against air drag, gravity, tire rolling 
resistance, inertia and drive-train losses, respectively. 
Pclimbing and Pinertia are reactive powers that can be 
positive or negative (uphill or downhill slopes; 
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accelerating or decelerating). Reactive powers are not 
dissipated; they may only be stored and / or retrieved. 
The other 3 power components listed in Equation 4 are 
resistive powers. Resistive powers are dissipated; they 
cannot be stored or retrieved. For the test ride with the 
cross fin, total energies and average values of all 
positive power components are tabulated under 
“workload categories” in the pie chart in Figure 6. 
Braking also dissipates power, but this power is not 
included in Equation 6 because normally brakes are not 
applied while simultaneously applying power to the 
pedals. 
 
Conclusions 
Wind yaw angles encountered during normal bike rides 
can be large enough to compromise the accuracy of an 
OFPM that utilizes a fixed Pitot tube as the only wind 
sensor without measuring wind yaw.  
It is possible to measure the prevailing wind velocity as 
a vector, even in the absence of a sensor for measuring 
wind angle, provided that the wind is steady and the 
axial (inline-projected) component of the apparent wind 
velocity, called “inline airspeed” and bike heading are 
recorded.  
Under steady wind conditions, instantaneous wind yaw 
can be estimated from the inline airspeed, prevailing 
wind speed and direction, bike speed and bike heading.  
If the apparent wind is not measured as a vector but its 
axial component is measured (i.e., conventional 
OFPM), using exact equations where the wind yaw is 
estimated from the prevailing wind (virtual wind yaw) 
can increase the accuracy of the estimated power.   
With special test rides that meet certain prerequisite 
terrain and wind conditions, CdA can be estimated as a 
function of wind yaw even without the use of a wind 
direction sensor. 
 

Practical applications 
We hope that this study will encourage the 
development of bicycle-mounted inclinometers, 
accelerometers and wind meters, and promote their 
use as optional accessories to bike computers and 
power meters, and to software applications for 
mobile devices. We also hope that wind sensors used 
for this purpose will measure the wind velocity as a 
vector, which might lead to the production of 
convenient, robust and accurate power meters at a 
lower cost than direct force measurement 
alternatives. 
The ease of acquiring and sharing wind data during 
bike rides may raise awareness of wind conditions on 
typical bike routes, during specific bike rides and 
competitive events. 
Resolving the wind velocity as a vector with respect 
to the ground opens up the ability to upload wind 
data from bicycle-based mobile devices to cloud 
services with the potential of generating crowd-
sourced wind maps. 
The method developed for measuring CdA as a 
function of wind yaw, and its potential application to 
new product R&D may influence the design of 

aerodynamic bicycle components.  
 

Abbreviations 
CdA: Effective Drag Area (product of the aerodynamic drag 
coefficient Cd and the area perpendicular to the apparent 
wind velocity) 
CFD: Computational Fluid Dynamics 
CSV: Comma Separated Values 
DFPM: Direct Force Power Meter 
GPS: Global Positioning System 
OFPM: Opposing Force Power Meter 
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