

Journal of Science & Cycling Breakthroughs in Cycling & Triathlon Sciences

Conference Abstract

Science and Cycling Conference, Lille 2025

Optimizing Cycling Time Trial Performance in Zwift: Validation of the PACE Model for Pacing Strategy

Matthew Van Dyck 1,*, Simon Dierickx 1, Michael Ghijs 1, Jan Boone 1 & Kevin Caen 1

Received: 3 March 2025 Accepted: 11 March 2025 Published: 19 November 2025

Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium

Correspondence

Matthew Van Dyck

Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium

matthew.vandyck@ugent.be

Abstract

The application of the critical power (CP) model to intermittent exercise allows to gain valuable insights into the dynamic balance between W' depletion and W' recovery, thereby offering a potential tool for designing and optimizing pacing strategies in cycling. This study aimed to assess whether a pacing plan based on the PACE model a novel model for real-time monitoring of W' during exercise - could improve time trial (TT) performance on the Zwift indoor cycling platform. Additionally, we investigated the impact of prior heavy-intensity exercise on TT performance. Twelve recreationally trained cyclists $(29 \pm 7 \text{ years}; 75.2 \pm 5.2 \text{ kg}; 180 \pm 3 \text{ cm}; 54.1 \pm 5.2 \text{ mL·min-}^{-1}\text{kg-}^{-1})$ completed 9 to 11 laboratory testing sessions on separate days. Following an initial maximal ramp test, critical power (CP) and W' were determined through 3 to 5 constant power output (PO) tests to exhaustion. Participants then completed four 23.5 km TTs on Zwift (The Muckle Yin): two TTs with self-selected pacing (TT1 + TT2), one TT following a 120minute constant work rate effort with 60 g/h carbohydrate intake (TTcwR), and one TT with model-imposed pacing (TTPACE). Differences in finish time and PO between the TTs were analysed using Repeated Measures ANOVA. IntraClass Correlation (ICC) was calculated between TT1 and TT2 to evaluate day-to-day variation. Critical power and W' were 281 ± 14 W and 22.8 ± 3.8 kJ, respectively. No significant differences in finish time were observed between TT_1 and TT_2 (p = 1.000, ICC = 0.974). Finish time was 77 ± 57 s faster in TT_{PACE} (2315 \pm 80 s) compared to TT₁ (2359 \pm 91 s, p < 0.001), TT₂ (2361 \pm 102 s, p = 0.031), and TT_{CWR} (2458 \pm 146 s, p = 0.002). Average PO was significantly higher in TTPACE (278 \pm 15 W) compared to all other conditions (TT₁ = 265 \pm 18 W, p < 0.001; TT₂ = $264 \pm 22 \text{ W}$, p = 0.029, TT_{CWR} = $243 \pm 27 \text{ W}$, p < 0.001). In conclusion, the present study results demonstrate the effectiveness of a novel predictive W' model to improve TT performance in recreational cyclists, by optimizing W' expenditure and recovery.

Keywords

critical power concept; W' balance; PACE model; Zwift

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

