

Journal of Science & Cycling Breakthroughs in Cycling & Triathlon Sciences

Conference Abstract

Science and Cycling Conference, Lille 2025

Modeling vs. Measuring: How Accurate Is the Calculated Maximal Lactate Steady State?

Mattice Sablain 1,*, Kobe Vermeire 1,2, and Jan Boone 1,2

Received: 1 March 2025 Accepted: 26 March 2025 Published: 19 November 2025

- Department of Movement and Sports Sciences, Ghent University, Belgium
- ² Center of Sports Medicine, Ghent University Hospital, Ghent, Belgium

Correspondence

Mattice Sablain

Affiliation Department of Movement and Sports Sciences, Ghent University, Belgium mattice.sablain@UGent.be

Keywords

maximal lactate steady state; maximal rate of lactate accumulation

1 Introduction

The maximal lactate steady state (MLSS) represents the highest sustainable workload without net lactate accumulation. In 1986, Mader & Heck proposed a model estimating MLSS by determining the steady state oxygen consumption at the crossing point (VO_{2ss}) between the rate of lactate formation and elimination. The sole input variables in this model are the VO_{2max} and the maximal rate of blood lactate (BLa⁻) accumulation (VLa_{max}) which is believed to represent the maximal glycolytic flux (Mader, 1994; Mader & Heck, 1986). Subsequently, an equation is often used to transform VO_{2ss} into a power output using the resting oxygen consumption (VO_{2rest}) and cycling efficiency (Kef). Previous research

found no significant difference between the calculated power at MLSS (cPMLSS) and experimentally measured power at MLSS (mPMLSS) (Hauser et al., 2014). However, the Bland-Altman plots showed quite broad limits of agreements (LoA). It remains unclear if these broad LoA are caused by an error in the determination of VO_{2ss} or the conversion into a power output as no prior studies have directly compared the measured (mVO_{2ss}) calculated VO_{2ss} (cVO_{2ss}). Therefore, this study wanted to compare mVO2ss and mPMLSS with cVO_{2ss} and cPMLSS. Furthermore, examined whether individualizing specific model constants (VO_{2rest} and K_{ef}) improved the LoA, potentially enhancing the model's applicability.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

2 Material and Methods

2.1 Participants

7 healthy male participants (age: 31 ± 9 years; VO_{2max} : 58.1 ± 8.6 mL·min⁻¹·kg⁻¹) visited the lab on 4-7 occasions with a minimum of 24h in between.

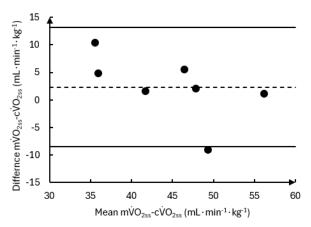
2.2 Methodology

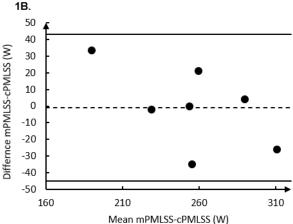
On the first test day, individualized VO_{2rest} was measured by means of gas exchange measurements during 20' of reclined resting, followed by a familiarization of a 15" isokinetic sprint test at 120 rpm (Cyclus2 ergometer; RBM Electronics, Leipzig, Germany). The second day consisted of the same seated 15" isokinetic sprint test with BLa measurements to determine VLamax. After a 12' warm-up at 1.5 W.kg-1, baseline [BLa-] (Lapre) was determined using capillary blood samples from the fingertip. Following the test, capillary blood samples were collected each minute for 9 minutes to determine the maximal [BLa-] after the test (Lamax-post). VLamax was then determined using equation 1 (Mader, 1994):

$$VLa_{max} = \frac{La_{max-post} - La_{pre}}{T_{test} - T_{alac}}$$

Equation (1)

where $La_{max-post}$ = maximal blood lactate concentration measured after the test (mmol·L⁻¹); La_{pre} = blood lactate concentration before the test (mmol·L⁻¹); T_{test} = duration of the test (s); and T_{alac} = alactic time interval (s).


T_{alac} was defined as the time until maximal power output during the isokinetic test dropped by 3.5% (Weber, 2003). On the second day, a ramp incremental exercise test (30 W·min⁻¹) was done to determine VO_{2max}, defined as the highest 30-s VO₂ average. On the following testdays mPMLSS was determined as per method of 30-min constant load tests with BLa⁻ measurements every 5 min. mPMLSS was defined as the highest power-output


where the rise in [BLa-] between the 10th and 30^{th} minute was ≤ 1 mmol·L⁻¹ (Heck et al., 1985). Constant load trials were repeated on different occasions, and the power output was increased or decreased by 10 W based on whether or not the criteria were met. The reference cPMLSS was determined using the Mader & Heck model using a fixed VO_{2rest} = 5 mL·min⁻¹·kg⁻¹ and Kef = 11.7 mL·min-1·W-1 (Nolte et al., 2022). individualized cPMLSS used The measured VO_{2rest} and individualized Kef which was determined as the difference between VO_{2ss} and VO_{2rest} divided by the mPMLSS. Related-samples Wilcoxon tests were used to compare measured and calculated VO_{2ss} and PMLSS. Additionally, the same test was applied to assess whether individualization improved cPMLSS. Bland-Altman plots were differences used to visualize between measurements.

3 Results

No significant differences were observed between mVO_{2ss} (μ = 45.9 mL·min⁻¹·kg⁻¹) and cVO_{2ss} (μ = 43.6 mL·min⁻¹·kg⁻¹) (p = 0.176; effect size = -0.511) nor between mPMLSS (μ =255 W) and cPMLSS (μ = 256) (p = 0.917; effect size = -0.040), despite broad LoA (-8.5 – 13.1 mL·min⁻¹·kg⁻¹ and -45 – 43 W respectively) (Fig. 1). Moreover, while not statistically significant, individualizing VO_{2rest} (μ = 263 W; p = 0.398; effect size = -0.32), K_{ef} (μ = 236 W; p = 0.176; effect size = -0.51) or both (μ =241 W; p = 0.176; effect size = -0.51) led to larger biases between mPMLSS and cPMLSS, further widening the LoA.

Figure 1. Bland-Altman plots showing the differences between mVO_{2ss} and cVO_{2ss} (Fig. 1A) and between mPMLSS and cPMLSS (Fig. 1B). The black line depicts the mean bias and the dashed lines depict 95% LoA.

4 Conclusions

In conclusion, our study shows that while the Mader & Heck model is effective at the group level, it lacks accuracy for individual assessments. The errors in VO_{2ss} calculation may stem from the input variables, model constants, or the model itself. Especially the lack of standardization and absence of research on the validity associated with *V*La_{max} measurements is a topic of contention. This highlights the need for caution when applying the model in training and performance settings. Further research is needed to identify the source of these inaccuracies.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

Hauser, T., Adam, J., & Schulz, H. (2014). Comparison of calculated and experimental power in maximal lactate-steady state during cycling. *Theoretical Biology* and Medical Modelling. doi: 10.1186/1742-4682-11-25

Heck, H., Mader, A., Hess, G., Mücke, S., Müller, R., & Hollmann, W. (1985). Justification of the 4-mmol/l lactate threshold. *International Journal of Sports Medicine*. doi: 10.1055/s-2008-1025824

Mader, A. (1994).Energiestoffwechselregulation, Erweiterungen des theoretischen Konzepts und seiner Begründungen - Nachweis der praktischen Nützlichkeit der Simulation Energiestoffwechsels. Computersimulation. Möglichkeiten Theoriebildung Und Ergebnisinterpretation. Brennpunkte Der Sportwissenschaft., 8(16).

Mader, A., & Heck, H. (1986). A theory of the metabolic origin of "anaerobic threshold." *International Journal of Sports Medicine*. doi: 10.1055/s-2008-1025802

Nolte, S., Quittmann, O. J., & Meden, V. (2022). Simulation of Steady-State Energy Metabolism in Cycling and Running. *SportRxiv*.

Weber, S. (2003). Calculation of performance-determining parameters of metabolic activity at the cellular level by means cycle ergometry [Berechnung metabolischen leistungsbestimmender Parameter der Aktivität auf zellulärer Ebene mittels fahrradergometrischer Untersuchungen]. Deutsche Sporthochschule.