BOOK OF ABSTRACTS

Open Access

Increased physical effort overrides the potentially deleterious effects of resource depletion following self-control

C Fullerton ¹ AM Lane ¹ and TJ Devonport ¹

Abstract

Background: Long duration cycling events require riders to maintain concentration and self-control over lengthy periods, for example, listening to race plans and/or eve-dropping on conversations of other riders whilst maintaining pace and bike control. Self-control is the deliberate effort to override a dominant response such as an emotion or thought with a response perceived to benefit goal attainment. Evidence suggests that self-control is an effortful process that draws upon both physiological and psychological resources (Gailliot et al., 2007: Journal of Personality and Social Psychology, 92 (2), 325–336). Thus, if effortful self-control draws upon physiological resources, then it could hamper endurance performance which utilises the same physiological substrates. However, recent research has questioned this explanation suggesting self-control might be more about resource allocation (Beedie & Lane, 2012: Personality and Social Psychology Review, 16(2):143-53).

Purpose: The purpose of the present study was to examine the effects of doing self-control tasks on cycle performance and emotion regulation. In a dual-task design, one task (bicycle ride) was personally meaningful and a second task (Stroop task) had unknown personal meaning. We hypothesised that by recruiting participants to a task that was personally meaningful, individuals' emotions would act as a signal to mobilise resources to overcome the potentially deleterious effects of resource-depletion deriving from the Stroop task. We predicted that performance on the Stroop task would deteriorate as participants re-allocated resources to the primary task.

Methods: 43 participants were randomly assigned to one of two conditions: an experimental condition comprising two self-control tasks performed consecutively and a control condition in which two tasks were performed consecutively but only one required self-control. The procedure was as follows: 1) Stroop task 2) Bicycle ride; 3) Stroop task; 4) Bicycle ride, 5) Stroop task. A modified version of the classic Stroop colour-word task was employed using shapes and colours. In the (non-depleting) control condition, shapes were presented in their respective shape and colour (e.g., the word "green" and shape "triangle" was presented in green ink and as a triangle). In the (depleting) experimental condition, the word and ink colour was incongruent with the shape (e.g., the words "green triangle" appeared below a red square in red font colour). Participants rated their emotions before and after both bicycle rides. They were all asked to rate how important it was to perform well.

Results: Cycle performance results indicated performance was fastest in the second trial (194 \pm 48s vs 212 \pm 45s) than the first trial (213 \pm 39s vs 230 \pm 41s) with no significant differences between the control and experimental group, hence suggesting the first self-control did not impair performance. Improved performance was matched with increased heart rate across trials for both the control (130 \pm 19bpm vs 136 \pm 19bpm) and experimental groups (125 \pm 22 vs 133 \pm 21bpm). In contrast, the rate of improvement for the Stroop was significantly faster among the control group compared to the experimental group across all three tasks (18.38 \pm 5.27 vs 24.17 \pm 5.67s; 17.54 \pm 4.86 vs 23.12 \pm 4.51; 16.39 \pm 4.70 vs 22.0.8 \pm 3.25).

Discussion: In support of our hypothesis, bicycle performance improved following completion of the Stroop task. In contrast to previous findings, final Stroop performance also improved suggesting that there could be a transfer effect. Our findings are consistent with recent research that has argued that cognitive and affective theory (Beedie & Lane, 2012) provides a better fit to deficits in self-control than the strength model (Gailliot et al., 2007).

Conclusion: These findings provide experimental evidence that self-control ability is temporarily impaired following a separate, unrelated self-control task. However, if participants are sufficiently motivated to perform well, then increased physical effort may improve self-control behaviour and this appears to transfer across tasks.

Contact email: c.l.fullerton@wlv.ac.uk (C. Fullerton)

¹ University of Wolverhampton, United Kingdom.

Received: 1 May 2014. Accepted: 1 June 2014.

