

Journal of Science & Cycling Breakthroughs in Cycling & Triathlon Sciences

Conference Abstract

Science and Cycling Conference, Lille 2025

Sodium Bicarbonate Ingestion for Performance Enhancement in Cycling: From Original Concept to Endurance Ergogenic

Andy Sparks 1,2,*

Received: 13 February 2025 Accepted: 12 March 2025 Published: 19 November 2025

- Research Innovations Manager, Maurten AB, Gothenburg, Sweden.
- ² Honorary Visiting Research Fellow, Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK.

Correspondence

Andy Sparks

Research Innovations Manager, Maurten AB, Gothenburg, Sweden.

Andy.Sparks@maurten.com

Abstract

Ingestion of sodium bicarbonate (SB) to enhance extracellular buffering and exercise performance has been researched since the 1930's. In that time there has been a considerable volume of research on SB across many sport and exercise contexts. Much of this work was conducted during the 1980's and 1990's (McNaughton, 1992) and laid the foundations for the ingestion practices that some athletes are still using, but over the past 10 years, there have been notable advances in SB ingestion methods. Renewed interest in SB began with the identification of highly variable inter-individual blood bicarbonate (HCO₃) responses (Jones et al., 2016), typical with traditional ingestion modes such as fluid or gelatine capsules. In response to this, the time to peak pre-exercise ingestion timing approach demonstrated that individualising ingestion time could improve performance further (Boegman et al., 2020). Meanwhile, attention also started to focus on methods to reduce the gastrointestinal symptoms (GIS) that can negatively impact performance for some athletes following SB ingestion. Pharmaceutical technologies were used to reduce the interaction of SB with stomach acid, via delayed release and enterically coated capsules, establishing that it was possible to considerably reduce some of the GIS (Hilton et al., 2019). In so doing, the pharmacokinetic responses of blood HCO3 were also observed to be specific to the mode of SB ingestion, which has implications for both the dose and timing of each ingestion form to maximise its ergogenic potential (Leach et al., 2023). The resolution of GIS problems has come recently in the format of a commercially available SB ingestion system that combines mini-tablets with a carbohydrate hydrogel delivery system (MBS). The MBS has demonstrated very low GIS responses and elevated and prolonged changes in blood HCO3 (Gough and Sparks 2024a). Furthermore, the MBS has now been shown to be effective at improving performance and recovery from 4 km time trials (Gough and Sparks 2024b), to enhance 40 km time trial performance (Shannon et al., 2024) and is being used extensively in the professional peloton. Interestingly, Shannon et al., (2024) have also suggested that gross economy may be improved using the MBS, along with relative reductions in perceived exertion. With the resolution of the GIS, it may now be possible to more clearly determine the ergogenic mechanisms that SB may enhance in addition to hydrogen ion buffering. These potential mechanisms include improved economy, muscle recruitment, and reduced pain and perceived exertion, and represent an exciting new avenue of investigation in future SB performance research.

Keywords: extracellular buffer; ergogenic aid; high-intensity exercise; endurance exercise; supplement

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Funding: Andy Sparks is an employee of Maurten AB, Sweden. No other external funding was received in support of this work.

Conflicts of Interest: Andy Sparks has previously received research funding from and is now employed by Maurten AB, Sweden. He has previously received research support sodium bicarbonate research from Lonza (Capsugel), Visp, Switzerland and Nephcentric Inc., Phoenic, AZ, USA and Maurten AB, Gothenburg, Sweden.

References

- Boegman, S., Stellingwerff, T., Shaw, G., Clarke, N., Graham, K., Cross, R., & Siegler, J. C. (2020). The Impact of Individualizing Sodium Bicarbonate Supplementation Strategies on World-Class Rowing Performance. *Frontiers in Nutrition*, 7, 138. doi: 10.3389/fnut.2020.00138
- Gough, L. A., & Sparks, S. A. (2024a). The Effects of a Carbohydrate Hydrogel System for the Delivery of Bicarbonate Mini-Tablets on Acid-Base Buffering and Gastrointestinal Symptoms in Resting Well-trained Male Cyclists. *Sports Medicine Open*, 10(1), 17. doi: 10.1186/s40798-024-00684-x
- Gough, L. A., & Sparks, S. A. (2024b). The Effects of a Novel Sodium Bicarbonate Ingestion System on Repeated 4 km Cycling Time Trial Performance in Well-Trained Male Cyclists. *Sports Medicine*, 54(12), 3199-3210. doi: 10.1007/s40279-024-02083-4

- Hilton, N. P., Leach, N. K., Sparks, S. A., Gough, L. A., Craig, M. M., Deb, S. K., & McNaughton L. R. (2019).
 A Novel Ingestion Strategy for Sodium Bicarbonate Supplementation in a Delayed-Release Form: a Randomised Crossover Study in Trained Males. Sports Medicine Open, 5(1), 4. doi: 10.1186/s40798-019-0177-0
- Jones, R. L., Stellingwerff, T., Artioli, G.G., Saunders, B., Cooper, S., & Sale, C. (2016). Dose-Response of Sodium Bicarbonate Ingestion Highlights Individuality in Time Course of Blood Analyte Responses. *International Journal of Sports Nutrition and Exercise Metabolism*, 26(5), 445-453. doi: 10.1123/ijsnem.2015-0286
- Leach, N. K., Hilton, N.P., Tinnion, D., Dobson, B., McNaughton, L. R, & Sparks, S. A. (2023). Sodium Bicarbonate Ingestion in a Fasted State Improves 16.1km Cycling Time-Trial Performance. *Medicine and Science in Sports and Exercise*, 55(12), 2299-2307. doi: 10.1249/MSS.000000000000003263
- McNaughton, L. R. (1992). Bicarbonate ingestion: effects of dosage on 60 s cycle ergometry. *Journal of Sports Sciences*, 10(5), 415-23. doi: 10.1080/02640419208729940
- Shannon, E. S., Regnier, A., Dobson, B., Yang, X., Sparks, S. A., & McNaughton, L. R. (2024). The effect of sodium bicarbonate mini-tablets ingested in a carbohydrate hydrogel system on 40 km cycling time trial performance and metabolism in trained male cyclists. *European Journal of Applied Physiology*, 124(12), 3671-3682. doi: 10.1007/s00421-02405567-3.1