Laboratory predictors of uphill cycling time trial performance

AH Bossi1✉, P Lima1, J Hopker2 and JRP Lima1

Abstract

Background: A field test which can be easily integrated into the training routine of cyclists to monitor performance changes is valuable. It has been demonstrated that when performing a 20-min outdoor time trial (TT), cyclists produce approximately 5.4% higher mean power output during uphill than flat routes (Nimmerichter et al., 2012: European Journal of Applied Physiology, 112(1), 69-78). Therefore, this discrepancy raises questions the relationship between uphill TT performance and physiological parameters obtained during laboratory graded exercise tests (GXT), as previously demonstrated on flat courses.

Methods: Separated by at least 48 hours, eleven male and one female moderately trained cyclists (30±5 years; 78.7±16.2 kg; 175±8 cm; mean±s) undertook a 30-s Wingate test on a mechanically braked cycle ergometer (Biotec2100, Cefise, Nova Odessa, Brazil) fitted with a power-measuring crank (SRM, Jülich, Germany), a GXT to exhaustion (Computrainer ProLab, RacerMate, Seattle, USA) and a 20-min outdoor uphill TT (2.8% mean gradient). GXT pulmonary gas exchanges were measured using breath-by-breath analyses (K4b2, Cosmed, Rome, Italy). During the TT, power output was measured using a mobile power meter (PowerTap, Saris, Madison, USA).

Results: Multiple linear regressions demonstrated that 95% of the variation in TT mean power output (PTT) was predicted by GXT VO2max and the respiratory compensation point (RCP), with standardized beta coefficients of 0.68 and 0.37 respectively. Moderate intraclass correlation coefficients were demonstrated for 94.6% PTT and RCP power (r = 0.87; 95%CI: 0.47-0.96). Bland Altman plot showed a bias ± random error of 4.4±51.6 W or 1.2±21.1 %. Mean values for Wingate 5-s peak power, Wingate 30-s mean power, PTT and 94.6% PTT were 899±163 W; 668±108 W; 295±53 W and 279±50 W, respectively. Mean values for GXT peak power output (Pmax), VO2max, RCP power and VT power were 341±46 W; 4.44±0.73 L.min⁻¹; 274±45 W and 173±31 W, respectively.

Discussion: The results of this study demonstrate that 95% of the variation in TT mean power output (PTT) was predicted by GXT VO2max and the respiratory compensation point (RCP), with standardized beta coefficients of 0.68 and 0.37 respectively. Moderate intraclass correlation coefficients were demonstrated for 94.6% PTT and RCP power (r = 0.87; 95%CI: 0.47-0.96). Bland Altman plot showed a bias ± random error of 4.4±51.6 W or 1.2±21.1 %. Mean values for Wingate 5-s peak power, Wingate 30-s mean power, PTT and 94.6% PTT were 899±163 W; 668±108 W; 295±53 W and 279±50 W, respectively. Mean values for GXT peak power output (Pmax), VO2max, RCP power and VT power were 341±46 W; 4.44±0.73 L.min⁻¹; 274±45 W and 173±31 W, respectively.

Conclusion: A 20-min outdoor TT performed on an uphill course can be utilized to predict with reasonable accuracy, power output at the respiratory compensation point and to monitor performance changes on moderately trained cyclists.

✉ Contact email: abossi.ef@gmail.com (AH. Bossi)

1 Faculty of Physical Education and Sports, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.

2 School of Sport and Exercise Sciences, University of Kent, Chatham Maritime, Chatham, Kent, England.